SearchBox:

Search Term: " Foam "

  Messages 1-7 from 7 matching the search criteria.
Lactase Enzymes and Acidophilus Darrell Miller 2/10/10
Natural Soap Bars Darrell Miller 1/20/09
Green Coffee Bean Extract Darrell Miller 10/22/08
Quercetin and Bromelain - for better health. Darrell Miller 7/4/05
Aromessentials Darrell Miller 6/10/05
Heart Science - A Five-Tiered Approach to Heart Health ... Darrell Miller 6/2/05
Ester E - Natural E for Cardiovascular and Antioxidant Support Darrell Miller 6/2/05



FULL CIRCLE Foam-Dispensing Dish Brush
   1 unit $14.35 33% OFF $ 9.61
EARTH SCIENCE Foaming Facial Cleanser
   6 OUNCE $13.99 33% OFF $ 9.37
ATTITUDE Foaming Hand Soap Coriander & Olive
   10 oz $5.99 28% OFF $ 4.31
ATTITUDE Foaming Hand Soap Green Apple & Basil
   10 oz $5.99 28% OFF $ 4.31
THE GREEN BEAVER Foaming Hand Soap Pump Cranberry
   8.4 OUNCE $7.79 24% OFF $ 5.92
THE GREEN BEAVER Foaming Hand Soap Pump Fresh Mint
   8.4 oz $7.79 18% OFF $ 6.39
THE GREEN BEAVER Foaming Hand Soap Pump Lavender
   8.4 OUNCE $7.79 24% OFF $ 5.92
THE GREEN BEAVER Foaming Hand Soap Refill Cranberry
   26 OUNCE $15.99 24% OFF $ 12.15
THE GREEN BEAVER Foaming Hand Soap Refill Fresh Mint
   26 OUNCE $15.99 24% OFF $ 12.15
THE GREEN BEAVER Foaming Hand Soap Refill Lavender
   26 OUNCE $15.99 24% OFF $ 12.15
DESERT ESSENCE Foaming Hand Wash Refill Pods Lavender
   3.8 OUNCE $10.49 25% OFF $ 7.87
DESERT ESSENCE Foaming Hand Wash Refill Pods Lemongrass
   3.8 OUNCE $10.49 25% OFF $ 7.87
DESERT ESSENCE Foaming Hand Wash Starter Kit Lavender
   1.3 OUNCE $9.39 25% OFF $ 7.04
DESERT ESSENCE Foaming Hand Wash Starter Kit Lemongrass
   1.3 OUNCE $9.39 25% OFF $ 7.04
CITRUS MAGIC Foaming Pet Cleanser
   8 oz $5.99 28% OFF $ 4.31
NATURE'S BABY ORGANICS Foaming Shower Oil Coconut Pineapple
   4 OUNCE $11.95 28% OFF $ 8.60

Lactase Enzymes and Acidophilus
TopPreviousNext

Date: February 10, 2010 11:16 AM
Author: Darrell Miller (dm@vitanetonline.com)
Subject: Lactase Enzymes and Acidophilus

Lactase 100ct 40mg from SolarayLactose intolerance is what is known as the inability to digest lactose. It is cause by a lack or deficiency of lactase. Lactase is an enzyme that is manufactured in the small intestine. It is responsible for splitting lactose into glucose and galactose. When a person who has lactose intolerance consumes milk or other dairy products, some or all of the lactose they contain remains undigested, retains fluid, and ferments in the colon. This results in abdominal cramps, bloating, diarrhea, and gas. Symptoms of lactose intolerance usually result between thirty minutes and two hours after consumption of dairy foods.

The degree of lactose intolerance varies from person to person. For most adults, lactose intolerance is actually a normal condition. Only Caucasians of northern European origin generally retain the ability to digest lactose after childhood. In the United States, somewhere between 30 and 50 million people are lactose intolerance. Lactase deficiency can also occur due to gastrointestinal disorders, which damage the digestive tract like celiac disease, irritable bowel syndrome, regional enteritis, or ulcerative colitis. Lactase deficiency can even develop on its own, with no known way to prevent it.

Lactose intolerance can occur in children as well as adults, even though it is far less common. In infants, lactose intolerance can occur after a severe case of gastroenteritis, which damages the intestinal lining. Symptoms of lactose intolerance in an infant can include Foamy diarrhea with diaper rash, slow weight gain and development, and vomiting. Lactose intolerance can cause discomfort and digestive disruption, although it is not a serious threat to health and it can be easily managed through dietary adjustments. The following nutrients are recommended for dealing with lactose intolerance. The dosages specified are for adults unless otherwise specified. For a child between the ages of twelve and seventeen, the dose should be reduced to three-quarters of the recommended amount. A child between the ages of six and twelve should use half the recommended dosage.

One teaspoon of acidophilus in distilled water, taken twice daily on an empty stomach, can help to replace lost friendly bacteria and promote healthy digestion. It is recommended that a nondairy formula is used. Charcoal tablets are helpful in absorbing toxins and relieving diarrhea. Four tablets taken every hour with water until symptoms subside can help combat an acute attack. 1,000 mg of magnesium should be taken daily, as it is need for calcium uptake and promotes pH balance.

A multivitamin and mineral complex should be taken as directed on the label because all nutrients are needed for optimal health. 400 IU of vitamin D3 is also needed for calcium uptake, while 200 IU of vitamin E daily protects the cell membranes that line the colon wall. It should be noted that the d-alpha-tocopherol form of vitamin E should be taken. 30 mg of zinc should be taken three times daily. A total of 100 mg daily from all supplements should not be exceeded. This nutrient is needed to maintain immune system and proper mineral balance. For best absorption, zinc gluconate lozenges should be used. Additionally, 3 mg of copper is needed to balance with zinc.

Most of all, a good lactase enzyme supplement can help ease painful gas and bloating when taken before dairy products are consumed.

(https://vitanetonline.com:443/forums/Index.cfm?CFApp=1&Message_ID=2124)


Natural Soap Bars
TopPreviousNext

Date: January 20, 2009 09:34 AM
Author: Darrell Miller (dm@vitanetonline.com)
Subject: Natural Soap Bars

With the earth-friendly topic being on so many people’s minds lately, consumers are realizing that using natural personal care products is a simple way to start with a greener lifestyle. Consumer demands for natural personal care products has actually experienced double digit growth consistently for the past few years, with this trend not expected to slow. At the same time, non-natural personal care is typically seeing less than a five percent growth.

Natural is currently one of the fastest growing subcategories of personal care, with a large crossover clientele emerging and many mass, grocery, and drug stores are now offering natural products. Success has moved natural ingredients into mainstream brands, opened doors to food, drug, and mass merchant distribution, and driven major consumer brands to enter the market. Larger mass market companies are now realizing the extreme growth potential and profitability of the natural market as compared to the traditional personal care market.

Manufactures have been trying many different things in the soap market including making soaps for sensitive skin, using fair trade ingredients, and discovering new ways to make creamier and more moisturizing soaps. Consumers are looking for their natural personal care products to have the same easy use and performance level of chemical-based personal care products. There is also an increase in interest in using food-based ingredients, as it is appealing on a consumer level due to the familiarity, because if you can eat it, it must be safe.

Fragrance-free and sensitive-sin products are also on the rise, with thirty percent of the population reporting some sensitivity to fragrance, while more than eighty percent report that exposure to fragrances is bothersome, with many synthetic fragrances containing phthalates, which are linked to birth defects and health-related issues. However, the consumer must know that there is actually a difference between unscented and fragrance-free. Unscented products mask the odor of the actual formula with a fragrance, which leaves the potential for skin irritation and allergic reactions.

The Natural Products Association recently launched a Natural Care Product Seal and Standard so that consumers could more easily identify products with truly natural ingredients. Adhering to these requirements can prove difficult for manufactures of natural soaps. Soaps and creams present several challenges to formulators who are seeking to avoid chemicals and synthetic materials. Soaps made according to the above standards will cleanse skin and hair, although they may have an appearance and texture that was different than many consumers are use to. These soaps may be thin, create minimal Foam, and may have a shorter shelf life than other natural products that are made according to alternative ingredient standards.

Although bar soaps are staple products year round, liquid soaps are currently gaining popularity, as bar soaps are often drying to the skin and have a high pH. Liquid soaps, on the other hand, have a pH closer to that of skin and also have the ability to moisturize. The market should see an increase in liquid soaps in the future, as the population ages and skin is drier and needs more moisture, leaving the moisturizing abilities of liquid soaps to meet these needs.

(https://vitanetonline.com:443/forums/Index.cfm?CFApp=1&Message_ID=1960)


Green Coffee Bean Extract
TopPreviousNext

Date: October 22, 2008 04:59 PM
Author: Darrell Miller (dm@vitanetonline.com)
Subject: Green Coffee Bean Extract

It is known that aging is largely a result of the effect of free radicals on our body cells, and that green coffee bean extract can be used to fight against these. While we intuitively understand what the term ‘aging’ means, very few people can actually describe it in words, although there are several theories of why it occurs.

The most viable of these include the Error Catastrophe Theory, related to faulty molecular transcription and errors in cellular function, the Crosslinkage Theory, in which progressively increasing cross-linking between proteins slows the body functions down, and the Neuroendocrine Theory, in which changes in homeostasis and hormone levels occur through time due to an increasing loss of sensitivity of receptors to feedback inhibition.

However, by far the most acceptable and best understood theory is the Free Radical Theory of Aging, which green coffee beans have been found to help fight, and it is on that which we shall focus here.

The Free Radical Theory of Aging

Free radicals are oxidants created by unpaired electrons. Electrons generally go around in pairs, but occasionally molecules lose one of these electrons, creating a situation where it possesses an unpaired electron. In this condition, that molecule has only one purpose in life and that is to oxidize other molecules by stealing an electron from them.

Oxidation can cause untold damage to cell membranes, and also to other molecules that are vital to life, such as DNA. The end result is aging, and the onset of many diseases and conditions connected with aging. Free radicals are believed to be behind inflammatory diseases such as arthritis and Crohn’s disease, strokes, cardiovascular disease, Parkinson’s disease, Alzheimer’s disease and cancer among many others. Each of these is associated with aging.

Free radicals are generated in the body in four different ways:

1. Energy is generated by the intercellular mitochondria by the production of ATP (adenosine triphosphate). By-products of the mechanism by which this is done include hydrogen peroxide, the superoxide anion, and a hydroxyl radical. Over 20 billion molecules of antioxidant are produced in each individual cell daily, and every one of these has the capability to do damage to your body. The figure for inefficient cell metabolism is significantly higher.

2. Peroxisomes are eukaryotic cell components that contain oxidative enzymes, whose function is to produce hydrogen peroxide that is then used by another enzyme, catalase, to oxidize other toxic substances. It is used by the liver, for example, to oxidize about a quarter of all the alcohol we drink to acetaldehyde, and also to remove other toxins from the body. The down side is that the hydrogen peroxide can escape and degrade the cell membranes.

3. Chronic infections give rise to a high activity of white blood cells, which utilize oxidants of various kinds to destroy viruses, bacteria and parasites. These include hydrogen peroxide, superoxide and nitric oxide which can also destroy the cells they are protecting.

4. Cytochrome P450 is an enzyme used to clear the body of toxic chemicals in our food such as pesticides and drugs. They also give rise to oxidative by-products.

In addition to these, free radicals are also produced by air pollution consisting of smoking, factory emissions and traffic fumes. Trace metals such as lead, iron and copper, are rich free radical sources, as is the ultraviolet component of sunlight, and caffeine, from tea and coffee, can also contribute to the store of free radicals in your body.

So where does green coffee extract come into this, and how should it be used. Free radicals tend to react very rapidly to accelerate aging, and in order to counter them, and hold the effects of aging at bay, it is necessary to destroy them almost as quickly as they are produced. This is carried out by antioxidants, of which there must be a plentiful supply available in each body cell.

Antioxidants donate electrons to free radicals, and so effectively neutralize them before they can attack the membranes of the cells in your body, or any of the other tissues that they can degrade. Many of the vitamins have a powerful antioxidant effect, among them vitamins A, C and E. Other antioxidants available in our diet include beta carotene and other carotenoids, flavonoids and glutathione, and also cofactors such as lipoic acid. All of these can destroy free radicals by the donation of an electron.

Green coffee beans have also been found to possess a strong antioxidant effect, due largely to the plant phenols, such as caffeic acid that forms chlorogenic acid with quinic acid, both cholorgenic and caffeic acid being string antioxidants. Green coffee bean extract is standardized to 99% chlorogenic acid. This substances not only reacts rapidly with free oxygen radicals but also helps to prevent to formation of hydroxyl radicals.

It has been established that green coffee bean reacts twice as fast as green tea or grape seed extracts, and speed of reaction is critical in the destruction of free radicals that have to be destroyed before they do damage. Other antioxidants found in extracts of green coffee beans include heterocyclic compounds such as pyrroles, furans and maltol.

The extract is made from beans of Coffea Arabica, this containing higher concentrations of chlorogenic and caffeic acids than the Arabica plant. The extract is also produced to be naturally low in caffeine, thus avoiding the negative effects of drinking coffee for its stimulating properties. When the green coffee bean is roasted, the antioxidant effect is found to decrease, and after roasting and brewing both the Arabica and the Robusta beans have reduced in activity to much the same level.

Studies on some of the conditions exacerbated by free radicals have indicated the effectiveness of green coffee beans as an antioxidant. It is believed to help reduce atherosclerosis caused by the oxidation of low density lipids (LDL). Oxidized LDLs tend to be easily absorbed by phagocytes to form plaques and Foam cells in artery walls, thus narrowing and hardening the arteries, causing a deprivation of oxygen and nutrients to the heart and also increased blood pressure. Antioxidants from the green coffee bean prevent this from happening, and so help to reduce this serious effect of aging.

A good supply of antioxidants will also prevent the cell membranes from being destroyed, one effect of which is to age the skin. Antioxidants in the form of green coffee bean extract can help to maintain a youthful appearance while also aiding in the prevention of the more serious effects of free radicals that can shorten life.

There are no doubts that free radicals contribute significantly to accelerated aging, and that the antioxidants contained in green coffee beans can help hold back the physical signs of aging, while also helping to destroy those free radicals that threaten life by promoting cancer, atherosclerosis, and other similar conditions.



--
Vitanet ®, LLC

(https://vitanetonline.com:443/forums/Index.cfm?CFApp=1&Message_ID=1922)


Quercetin and Bromelain - for better health.
TopPreviousNext

Date: July 04, 2005 10:28 AM
Author: Darrell Miller (dm@vitanetonline.com)
Subject: Quercetin and Bromelain - for better health.

  • Maintains Tissue Comfort by Regulating Enzymes*
  • Helps Maintain Normal Blood Viscosity*
  • Bromelain May Enhance Quercetin Absorption
  • Benefits

    Down-regulates the Body’s Response to Environmental Challenges Quercetin is a member of the flavonoid family, a diverse group of low molecular-weight compounds found throughout the plant kingdom. Flavonoids exhibit numerous biological activities, many of which are directly beneficial to human health. Quercetin, which belongs to the “flavonol” subgroup, is one of the most versatile and important flavonoids. Quercetin has a broad range of activity, much of which stems from its interaction with calmodulin, a calcium-regulatory protein.1 Calmodulin transports calcium ions across cellular membranes, initiating numerous cellular processes. Quercetin appears to act as a calmodulin antagonist.1 Through this mechanism, quercetin functions at the cell-membrane level with a membrane-stabilizing action.2 Quercetin inhibits calmodulin-dependent enzymes present at cell membranes such as ATPases and phospholipase, thereby influencing membrane permeability.3 Quercetin affects other calmodulin-dependent enzymes that control various cellular functions, including the secretion of histamine from mast cells.4 A number of investigations have corroborated quercetin’s ability to reduce histamine secretion from mast cells in various tissues, and also from basophils.5,6,7,8,9,10

    Quercetin modifies the body’s response to antigenic substances.* Suppression of histamine secretion from mast cells is one of quercetin’s most clinically important effects. Quercetin acts on ATPase at the membranes of histamine-containing granules in mast cells.3 Mast-cell degranulation and subsequent release of histamine into the bloodstream is an integral part of the body’s response to environmental challenges.

    Maintains Tissue Comfort by Regulating Enzymes*

    Quercetin’s enzyme-inhibiting action extends to enzymes such as phospholipase, which catalyzes the release of arachidonic acid from phospholipids stored in cell membranes.4,10 Arachidonic acid serves as the key substrate for substances such as thromboxanes, inflammatory prostaglandins and leukotrienes. In addition, quercetin inhibits the enzymes cyclooxygenase and lipoxygenase, which catalyze the conversion of arachidonic acid into its metabolites.4,10,11,12 Reducing levels of these metabolites, as well as histamine levels, is beneficial in maintaining the normal comfort level of body tissues and structures.

    Quercetin has also been shown to limit the function of adhesion molecules on endothelial cells.13 Adhesion molecules are involved in physiologic processes that influence tissue comfort.13

    Bromelain is a complex substance derived from the pineapple stem largely composed of proteolytic (protein-digesting) enzymes. Bromelain acts by a variety of mechanisms to help maintain tissues in a normal state of comfort.14,15 Several investigators, including Taussig16 and Ako, et. al.,17 have presented evidence that bromelain is a fibrinolytic agent, i.e., it induces the breakdown of fibrin, a plasma protein that blocks tissue drainage. The generally accepted mechanisms involve direct proteolysis of fibrin by bromelain and activation of plasmin, a serum protease.16 Plasmin acts on fibrinogen (the precursor to fibrin), forming peptides which stimulate PGE1, a prostaglandin that helps maintain tissue comfort.16

    Helps Maintain Health of Blood Vessels by Modifying Oxidation of LDL Cholesterol* — Quercetin’s Antioxidant Action Quercetin is a versatile and effective antioxidant that scavenges a variety of free-radicals such as hydroxyl and lipid peroxy radicals.18 Quercetin also chelates ions of transition metals such as iron, which can initiate formation of oxygen free radicals.18 LDL cholesterol is vulnerable to oxidation by lipid peroxides. Oxidized LDL is absorbed by macrophages and arterial endothelial cells, leading to the formation of “Foam cells,” and eventually plaque deposits, in arterial walls. Quercetin has been shown to protect LDL from oxidation, both by lipid peroxides and transition metal ions.19

    Helps Maintain Normal Blood Viscosity*

    Quercetin inhibits blood platelet aggregation (clumping), by potentiating PGI2, an anti-aggregatory prostaglandin, and by raising platelet cyclic AMP levels.20 Human studies have revealed that bromelain also reduces platelet aggregation.21 These properties qualify both quercetin and bromelain as valuable dietary ingredients for maintaining cardiovascular health.*

    Bromelain May Enhance Quercetin Absorption

    In addition to the actions described above that support the effects of quercetin, bromelain may also assist the absorption of quercetin in the G.I. tract. (Quercetin is generally believed to be poorly absorbed, although a recent study by Hollman et. al.,22 which concluded that humans do in fact absorb appreciable amounts of quercetin, contradicts this assumption.) Studies have shown that bromelain enhances absorption of antibiotics, presumably by increasing permeability of the gut wall.23, 24 Given that quercetin is a low molecular-weight compound, it is plausible that simultaneously ingested bromelain likewise enhances quercetin absorption.

  • *This statement has not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure or prevent any disease.
  • Scientific References

    1. Nishino, H., et. al., “Quercetin interacts with calmodulin, a calcium regulatory protein.” Experientia 1984;40:184-5.
    2. Busse, W.W., Kopp, D.E., Middleton, E., “Flavonoid modulation of human neutrophil function.” J. Allergy Clin. Immunol. 1984;73:801-9.
    3. Havsteen, B,. “Flavonoids, a class of natural products of high pharmacological potency.” Biochemical Pharmacology 1983;32(7):1141-48.
    4. Middleton, E., “The Flavonoids.” Trends in Pharmaceutical Sciences 1984;5:335-8.
    5. Otsuka, H. et. al., “Histochemical and functional characteristics of metachromatic cells in the nasal epithelium in allergic rhinitis: Studies of nasal scrapings and their dispersed cells.” J. Allergy Clin. Immunol.1995;96:528-36.
    6. Fox, C.C., et. al., “Comparison of human lung and intestinal mast cells.” J. Allergy and Clin. Immunol. 1988;81:89-94.
    7. Pearce, F.L., Befus, A.D., Bienenstock, J., “Mucosal mast cells III. Effect of quercetin and other flavonoids on antigen-induced histamine secretion from rat intestinal mast cells.” J. Allergy and Clin. Immunol. 1984;73:819-23.
    8. Middleton, E. Drzewiecki, G., Krishnarao, D., “Quercetin: an inhibitor of antigen-induced human basophil histamine release.” J. of Immunology 1981;127(2):546-50.
    9. Bennett, J.P., Gomperts, B.D., Wollenweber, E.,“ Inhibitory effects of natural flavonoids on secretion from mast cell and neutrophils.” Arzneim. Forsch/Drug Res. 1981;31(3):433-7.
    10. Middleton, E. Drzewiecki G., “Naturally occurring flavonoids and human basophil histamine release.” Int. Archs Allergy appl. Immun. 1985;77:155-7.
    11. Yoshimoto, T. et. al., “Flavonoids: potent inhibitors of arachidonate 5-lipoxygenase.” Biochemical and Biophysical Research Communications 1983;116(2):612-18.
    12. Della Loggia, R., et. al., “Anti-inflammatory activity of benzopyrones that are inhibitors of cyclo- and lipo-oxygenase.” Pharmacological Research Communications 1988; 20(Supp. V):91-94.
    13. Middleton, E., Suresh, A., “Quercetin inhibits lipopolysaccharide-induced expression of endothelial cell intracellular adhesion molecule-1.” Int. Arch. Allergy Immunol. 1995;107:435-6.
    14. Taussig, S.J., Batkin, S., “Bromelain, the enzyme complex of pineapple (Ananas comosus) and its clinical application.” An Update Journal of Ethnopharmacology 1988;22:191-203.
    15. Lotz-Winter, H., “On the pharmacology of bromelain: An update with special regard to animal studies on dose-dependent effects.” Planta Medica 1990;56:249-53.
    16. Taussig, S.J., “The mechanism of the physiological action of bromelain” Medical Hypothesis 1980;6:99-104.
    17. Ako, H. Cheung, A.H.S., Matsuura, P.K., “Isolation of a fibrinolysis activator from commercial bromelain.” Arch. Int. Pharmacodyn. 1981;284:157-67.
    18. Afanas’ev, I.B. et. al., “Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation.” Biochemical Pharmacology 1989;38(11):1763-69.
    19. De Whalley, C.V., “Flavonoids inhibit the oxidative modification of low density lipoproteins by macrophages.” Biochemical Pharmacology 39(11):1743-50.
    20. Beretz, A. Stierle, A., Anton, R. Cazenave, J., “Role of cyclic AMP in the inhibition of human platelet aggregation by quercetin, a flavonoid that potentiates the effect of prostacyclin.” Biochemical Pharmacology 1981;31(22):3597-600.
    21. Heinicke, R. van der Wal, L. Yokoyama, M., “Effect of bromelain (Ananase®) on human platelet aggregation. ”Experientia 1972;28(7):844.
    22. Hollma, P. et. al., “Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers.” Am. J. Clin. Nutr. 1995;62:1276-82.
    23. Giller, F.B., “The effects of bromelain on levels of penicillin in the cerebrospinal fluid of rabbits.” A., J. Pharm. 1962;134:238-244.
    24. Bodi, T., “The effect of oral bromelain on tissue permeability to antibiotics and pain response to bradykinin; double-blind studies on human subjects.” Clin. Med. 1965;72:61-65



    --
    Vitanet ®

    (https://vitanetonline.com:443/forums/Index.cfm?CFApp=1&Message_ID=546)


    Aromessentials
    TopPreviousNext

    Date: June 10, 2005 05:38 PM
    Author: Darrell Miller (dm@vitanetonline.com)
    Subject: Aromessentials

    Aromessentials by Joanne Gallo , February 3, 2002

    Aromessentials By Joanne Gallo

    But aromatherapy is more than just a '90s-style novelty. The practice of using aromatic essential oils for psychological and physical well-being dates back more than 4,000 years to medicinal practices in Egypt and India.

    The term "aromatherapy" was coined in 1937 by French cosmetic chemist R.M. Gattefosse, who discovered the benefits of essential oil after burning his hand in a laboratory accident. Gattefosse immersed his hand into the nearest available cool liquid: a vat of lavender oil. The near miraculous soothing of his pain and rapid healing spurred him to dedicate his life to the study of aromatic plants and their therapeutic effects.

    How it Works

    For those who turn their noses up at this most seemingly-subtle of senses, keep in mind that the perception of smell is 10,000 times more sensitive than the sense of taste. "The sense of smell is the sense of the imagination," noted French philosopher Jean-Jacques Rousseau; this emotional connection lies at the heart of aromatherapy.

    Aromas are transmitted rapidly from olfactory cells in the nose to the limbic system in the brain which perceives and responds to emotion, pleasure and memory. Scents trigger the limbic system to release neurochemicals which influence mood. Well-known neurochemicals like endorphins and serotonin help create a sense of well-being.

    When you inhale essential oils, some of the molecules travel to the lungs, where they proceed to enter the bloodstream and circulate throughout the body.

    Oils applied to the skin are absorbed into the bloodstream as well. Because they are oil/fat soluble, essential oils are highly absorbed by the body, where they circulate for anywhere from 20 minutes to 24 hours and are eventually eliminated through sweat and other bodily secretions.

    Plant Power

    Essential oils are extremely potent and volatile: approximately 75 to 100 times more concentrated than dried herbs.

    Most essential oils are steam distilled from herbs, flowers and plants. Others are cold expressed from the rind of the fruit, which produces the purest essential oils because no heat or chemical treatment is involved.

    The components of various oils are beneficial for a wide variety of beauty and hygiene conditions. Some of the more indispensable essential oils include:

    Chamomile (anthemis nobilis): soothing properties for sensitive and inflamed skin; calming, balancing and relaxing.

    Clary Sage (salvia sclarea): warming, female balancing herb used for PMS; calms anxiety, tension and stress; also used as a muscle relaxant for aches and pains.

    Eucalyptus (eucalyptus globulus): antibacterial; fresh, herbal menthol aroma; widely used as an inhalant for colds, coughs and congestion; excellent for massaging tired or sore muscles.

    Geranium (pelargonium graveolens): one of the best all-around tonic oils for mind and body; soothes nervous tension and mood swings; balances female hormones and PMS; gently astringent and antiseptic, it improves general tone and texture of skin.

    Jasmine (jasminum grandiflorum): a warm, rich, sensual floral scent used historically as an aphrodisiac; moisturizing for dry/mature skin.

    Lemon (citrus limonum): refreshing and invigorating; eases tension and depression; useful for oily skin and treatment of acne.

    Peppermint (mentha piperita): cool, menthol, invigorating stimulant; cleans and purifies the skin.

    Rosemary (rosmarinus officinalis): stimulating and uplifting; purifying and cleansing for all skin types; warm and penetrating for massage to ease muscular aches and pains.

    Tea Tree (melaleuca alternifolia): an antiseptic from the leaves of the Australian tea tree; antifungal, antibacterial and antiviral; excellent for skin irritations like cold sores, insect bites and acne.

    Ylang Ylang (cananga odorata): enticing and sensual; helps alleviate anger, stress, insomnia and hypertension; helps balance the skin's sebaceous secretions.

    Oil Well

    Essential oils can be utilized in a variety of ways: in electric or candle-based diffusers, to spread the aroma through a room; in sachets and air fresheners; added to shampoos and lotions; or diluted and applied to pulse points like the temples, on neck or on wrists. Undiluted essential oils should never be applied to the skin. First mix them with carrier oils: pure vegetable oils such as sweet almond oil, grapeseed oil and apricot kernel oil. Use a general guideline of six to 18 drops of essential oil per one ounce of vegetable oil. Blended, diluted oils are also available which can be used directly on your skin.

    Pond's Aromatherapy Capsules come in four scents: Happy, which is fruity and floral; Romantic,with musk and vanilla; Relaxing, a floral and woodsy aroma; and Energizing, with fresh citrus and bright floral scents.

    Sarah Michaels offers four essential oil blends: Sensual Jasmine, Soothing Lavender, Refreshing Citrus and Invigorating Peppermint.

    The San Francisco Soap Company's Simply Be Well Line features an essential oil light ring set, a diffuser that uses the heat of a light bulb to spread an aroma through your room.

    Tub Time

    One of the most popular and luxurious ways to enjoy aromatherapy is in a steaming hot bath. Numerous bath products formulated with plant essences can turn your tub time into a rejuvenating experience. Body & Earth features Body Wash, Foam Bath and Soap in five essences: Vanilla Serenity, Lavender Whisper, Playful Peach, Raspberry Rapture and Pear Essence.

    The Healing Garden offers a full line of aromatherapy products; try their Tangerinetherapy Wake Up Call Body Cleanser, Gingerlily Therapy Upbeat Bath & Shower Gel; or Minttherapy Fresh Start Bath & Shower Gel.

    Simply Be Well products take traditional aromatherapy one step further by combining essential oils with herbal extracts and natural nutrients.

    The line includes Shower Gel and Bath Salts in four fragrances: Explore contains ginkgo, eucalyptus, lemon and vitamin B6; Share features dong quai, passionflower, ylang ylang and zinc; Unwind includes kava kava, geranium, lavender and vitamin E; and Celebrate contains ginseng, wild mint, hemp and vitamin C.

    Yardley London Bar Soaps, formulated with botanicals and moisturizers, are available in five fragrances: soothing English Lavender, exfoliating Oatmeal and Almond, Aloe Vera for natural healing, skin-softening Chamomile Essence, and astringent Evening Primrose.

    Skin Deep

    "Aromatherapy and the cosmetic use of essential oils have made a tremendous contribution to skin care," asserts Joni Loughran, author of Natural Skin Care: Alternative & Traditional Techniques (Frog, Ltd.). "Every type of skin (such as oily, dry, and normal) can benefit." Some of the natural products that can help balance your skin include these:

    Kiss My Face Foaming Facial Cleanser for Normal/Oily skin features citrus oils which act as antiseptics, marigold for healing, licorice root for toning, lavender to normalize oil production, plus the antioxidant green tea.

    Kiss My Face's Gentle Face Cleaner for Normal/Dry skin includes essential oils plus organic, detoxifying herbs goldenseal and red clover, echinacea and rose hips with natural vitamin C.

    Naturistics Almond Facial Moisture Cream contains almond, allantoin and calendula to smooth dry skin; Wild Chamomile Facial Lotion with rose hips and honeysuckle soothes and conditions rough skin.

    Simply Be Well products, which use essential oils combined with herbal extracts like ginkgo and dong quai, are available in Body Lotion and Body Mist.

    Wicks and Sticks

    Perhaps the easiest way to get your aromatherapy fix is to light a candle and just sit back, relax and breathe.

    The Healing Garden offers a wide variety of aromatic candles to suit your every mood; try their Green Teatherapy Meditation Candle; Jasminetherapy Embrace the Light Love Candle; or Lavendertherapy Peace & Tranquility Candle.



    --
    Vitanet ®

    (https://vitanetonline.com:443/forums/Index.cfm?CFApp=1&Message_ID=279)


    Heart Science - A Five-Tiered Approach to Heart Health ...
    TopPreviousNext

    Date: June 02, 2005 12:07 PM
    Author: Darrell Miller (dm@vitanetonline.com)
    Subject: Heart Science - A Five-Tiered Approach to Heart Health ...

    Heart Science 30 tabs

    Your heart is crucial to every function of your body. It is the sole organ which pumps oxygen-rich blood through the entire circulatory system, feeding your cells and making life possible. Only recently are Americans realizing the importance of a proper low-fat diet, regular exercise, giving up cigarette smoking, and cutting down alcohol consumption to maintaining a healthy heart. Unfortunately, there has been a huge gap in the number of nutritional supplements which provide nutrients and herbs to support normal heart function. That’s where Source Naturals HEART SCIENCE comes in. Two years in the making, and backed by numerous scientific studies, the nutrients in HEART SCIENCE are some of the most soundly researched of all. Combining high potencies of these super-nutrients, HEART SCIENCE is the most comprehensive, cutting edge nutritional approach to proper heart care available.

    Source Naturals HEART SCIENCE— The Five Tiered Approach to Heart Health

    Your heart never rests. Even while you sleep, your heart must keep working, relying on the constant generation of energy by the body for its very survival. If this vital organ stops beating for even a short amount of time, all bodily functions cease and life ends. Source Naturals HEART SCIENCE helps support heart function on the chemical, cellular, structural, and energetic levels. This broad spectrum formula includes ingredients specifically geared for
    1) generating energy,
    2) decreasing harmful homocysteine levels,
    3) fighting oxidized cholesterol,
    4) maintaining the heart’s electrical rhythm, and
    5) protecting artery and capillary linings.

    Energy Generators for An Energetic Organ

    Every day, the human heart beats about 104,000 times, pumping over 8,000 liters of blood through the body! Because it requires so much energy to perform efficiently, the experts at Source Naturals included specialty nutrients in HEART SCIENCE such as Coenzyme Q10 and L-Carnitine — integral factors in the body’s energy production cycles — to enhance the body’s energy supply.

    There are three main interconnected energy generating cycles in our cells — the Glycolytic (sugar-burning) cycle, the Krebs’ (citric acid) cycle, and the Electron Transport Chain. Together they supply about 90 to 95% of our body’s entire energy supply, using fats, sugars, and amino acids as fuel. Coenzyme Q10 is one of the non-vitamin nutrients needed to maximally convert food into ATP (the energy producing molecule). It is the vital connecting link for three of the four main enzyme complexes in the Electron Transport Chain, the next step in energy generation after the Krebs’ cycle. Using the raw materials generated by the Krebs’ cycle, the Electron Transport Chain produces most of the body’s total energy! The heart is one of the bodily organs which contains the highest levels of CoQ10, precisely because it needs so much energy to function efficiently.

    CoQ10 is one of the most promising nutrients for the heart under investigation today. It has been postulated that as a result of its participation in energy production, CoQ10 improves heart muscle metabolism and the electrical functioning of the heart by enhancing its pumping capacity.8 Many factors such as a high fat diet, lack of exercise, and cigarette smoking can lead to suboptimal functioning of the heart, and therefore failure of the heart to maintain adequate circulation of blood. Interestingly, people whose lifestyles reflect the above factors also tend to have depleted levels of CoQ10 in the heart muscle.10

    Researchers suggest taking between 10-100 mg per day of CoQ10;18,29 HEART SCIENCE provides an impressive 60 mg of CoQ10 per 6 tablets. Similar to CoQ10, L-Carnitine is important for energy production in heart cells. It is a natural amino acid-like substance which plays a key role in transporting fatty acids, the heart’s main source of energy, to the mitochondria, the “power plants” of each cell, where they are utilized for the production of ATP. Heart and skeletal muscles are particularly vulnerable to L-Carnitine deficiency. Studies have shown that supplementation with LCarnitine improves exercise tolerance in individuals with suboptimal heart and circulatory function, and seems to lower blood lipid status and increase HDL (good) cholesterol.16, 22 Each daily dose of HEART SCIENCE contains 500 mg of this extremely important compound.

    Like CoQ10 and L-Carnitine, B Vitamins help improve the ability of the heart muscle to function optimally. Each B Vitamin, after being converted to its active coenzyme form, acts as a catalytic “spark plug” for the body’s production of energy. Vitamin B-1, for example, is converted to Cocarboxylase, which serves as a critical link between the Glycolytic and Krebs’ Cycles, and also participates in the conversion of amino acids into energy. A deficiency of B coenzymes within contracting muscle cells can lead to a weakened pumping of the heart.21

    HEART SCIENCE is formulated with high quantities of the most absorbable forms of B Vitamins providing maximum nutrition for the high energy demands of heart cells.

    Homocysteine Regulators

    B Vitamins also play a crucial role in the conversion of homocysteine, a group of potentially harmful amino acids produced by the body, to methionine, another more beneficial amino acid. While it is normal for the body to produce some homocysteine, even a small elevation in homocysteine levels can have negative implications. It is well documented that individuals who are genetically predisposed to having elevated homocysteine levels (homocysteinemics) tend to have excessive plaque accumulation in the arteries and premature damage to endothelial cells (cells lining the blood vessels and heart).26 Researchers have found that even those without this genetic abnormality, whose homocysteine levels are much lower than those of homocysteinemics, still have an increased risk for premature endothelial damage and the development of plaque in the arteries.24, 26 One study conducted among normal men and women found that those with the highest levels of homocysteine were twice as likely to have clogged arteries as were those with the lowest levels.24 Furthermore, it was found that the lower the research subjects’ blood levels of folate and B-6, the higher their homocysteine levels.24 Another study found that Folic Acid administered to normal men and women who were not even deficient in folate caused a significant reduction in plasma concentrations of homocysteine!3 In order to regulate homocysteine levels, it is critical to provide the body with sufficient amounts of B-6, B-12, and Folate, whether through the diet or through supplementation. HEART SCIENCE includes high levels of these three nutrients, providing B-6 in the regular and coenzyme form for maximum utilization.

    The Dangers of Oxidized LDL Cholesterol

    While many people have heard that high cholesterol levels may negatively affect normal heart function, few people understand exactly what cholesterol is, or how it can become harmful. Cholesterol is a white, waxy substance produced in the liver by all animals, and used for a variety of necessary activities in the body. Your liver also manufactures two main kinds of carrier molecules which transport cholesterol throughout the system: Low Density Lipoprotein (LDL) and High Density Lipoprotein (HDL). Cholesterol is either carried out by LDL from the liver to all tissues in the body where it is deposited, or carried back by HDLs which remove cholesterol deposits from the arteries and carry them to the liver for disposal. Because of this, LDL cholesterol is considered damaging, while HDL is considered protective. Problems occur when there is too much LDL cholesterol in the body and not enough HDL.

    When the body becomes overloaded with fat, an over-abundance of LDL particles are manufactured to process it, and they in turn become elevated in the body to a degree that the liver cannot handle. Rich in fatty acids and cholesterol, these particles are highly susceptible to free radical attack (oxidation). Once oxidized, LDL particles are no longer recognized by the body, which attacks them with immune cells. Immune cells which are bloated by oxidized lipids (called Foam cells) are a key factor in the development of “fatty streaks” — the first sign of excess arterial fat accumulation. The bloated immune cells accumulate in artery lesions and create plaque in blood vessels, leading to obstruction and constriction of the vessels. Plus, these lodged Foam cells continue to secrete free radicals into the bloodstream, making the problem worse.

    The development of lesions in the arteries is not an uncommon problem. Arterial (and all blood vessel) walls are composed of a chemical matrix which holds the endothelial cells in place. That endothelial layer is the first and most important line of defense in preventing large molecules, such as cholesterol and fat, from entering the vessel wall. This matrix is composed of proteins, collagen, elastin, and glycosaminoglycans (amino sugars). Arterial lesions can be caused by suboptimal collagen and elastin synthesis due to three factors: 1. Vitamin C deficiency (since Vitamin C is a key building block for collagen and elastin); 2. excessive consumption of rancid fats, or heavy usage of alcohol or cigarettes; and 3. free radical damage. Once these lesions are created, the body attempts to repair them by depositing LDL cholesterol — similar to the way one would patch a tire. If that cholesterol is not oxidized, i.e. chemically changed to a harmful, unstable molecule, then this process does not create a problem. But when arterial lesions are “patched” with Foam cells, arterial walls suffer page 3 page 4 even more damage, because those Foam cells release free radicals which can further damage cell membranes.

    Unfortunately, most people have a lot of oxidized cholesterol floating through the bloodstream. The typical American diet, with its low antioxidant intake and overconsumption of fried and overcooked foods, contributes to the overall levels of harmful oxidized cholesterol. In fact, the average American intake of antioxidants is low even by USRDA standards, making Americans particularly prone to having high levels of oxidized cholesterol.

    Cholesterol Fighters

    Fortunately, there are concrete steps you can take to prevent the oxidation of cholesterol, and its subsequent ill effects on health. In addition to cutting out high-cholesterol and fatty foods, supplementation can protect existing cholesterol and all tissue cells — from oxidation. Antioxidants, substances which scavenge and neutralize free radicals, protect the cardiovascular system by halting the oxidation of cholesterol, and helping to prevent plaque accumulation in the arteries and the continual secretion of free radicals by Foam cells. Supplementing the diet with high amounts of Vitamin C, a key antioxidant, also encourages a more healthy “patching” of existing lesions by using collagen (made from Vitamin C) instead of cholesterol. HEART SCIENCE contains generous amounts of the following antioxidants for their protective benefits:

  • • Beta Carotene, a plant pigment, is the naturally occurring precursor to Vitamin A. When the body takes in high enough amounts of Beta Carotene, this lipid-soluble free radical scavenger concentrates in circulating lipoproteins and atherosclerotic plaques, where it performs its antioxidant functions. Beta Carotene is particularly unique and powerful as an antioxidant because it is capable of trapping a very toxic form of di-oxygen, called singlet oxygen, which can result in severe tissue damage. Beta Carotene is one of the most efficient quenchers of singlet oxygen thus far discovered. Six tablets of HEART SCIENCE provide an unprecedented 45,000 IU of Beta Carotene!
  • • Vitamin C is found in plasma, the watery component of blood, where it functions as a potent antioxidant. In addition to strengthening artery linings through collagen manufacture, Vitamin C is involved in the regeneration of Vitamin E within LDL particles. Vitamin C also plays an important role in the conversion of cholesterol into bile acids by the liver, a crucial step in reducing blood cholesterol levels. Once converted into bile acids, and then into bile salts, cholesterol can be excreted from the body, preventing build-up. Supplementation with Vitamin C may lower levels of LDL cholesterol and increase those of HDL cholesterol.25 It may also have a part in actually removing cholesterol deposits from artery walls — good news for people who are already experiencing plaque buildup.25 Each daily dose of HEART SCIENCE provides 1,500 mg of Vitamin C in its bioactive mineral ascorbate form.
  • • Vitamin E, together with Beta Carotene, protects lipids from free radical attack. It is the major antioxidant vitamin that is carried in the lipid fraction of the LDL particle, where it protects the LDL particle from damaging oxidation. Within an LDL particle, one molecule of Vitamin E has the ability to protect about 200 molecules of polyunsaturated fatty acids from free radical damage! Vitamin E also aids in protecting the heart by interfering with the abnormal clumping of blood cell fragments, called platelets, within blood vessels.4 It has been shown to inhibit the formation of thromboxanes and increase the production of prostacyclins, which together decrease abnormal platelet aggregation.11 A high potency of Vitamin E — 400 IU’s — is included in six tablets of HEART SCIENCE in the natural d-alpha succinate form, recognized by scientific researchers to be the most absorbable form!
  • • Selenium is an important mineral which has only recently gained attention. When incorporated into the enzyme Glutathione Peroxidase, it has highly powerful free radical-scavenging abilities, and has been shown to work synergistically with Vitamins A, C, and E. An essential mineral, Selenium used to be derived from eating foods grown in Selenium-rich soil. However, modern agricultural practices have depleted soil of its natural Selenium content, leaving many Americans deficient in this vital nutrient. Several epidemiological studies show that the incidence of advanced fatty deposits in blood vessels is much greater in individuals living in geographic areas of the United States and other parts of the world where the Selenium content of the soil is very low.27
  • Proanthodyn,™ an extract of grape seeds, is being called the most powerful antioxidant yet discovered. This highly potent, water-soluble bioflavonoid contains between 93-95% proanthocyanidins, the highest concentration of any nutrient available today. The protective actions of proanthocyanidins may help to prevent the development of plaque in artery walls by inhibiting the free radicals which are produced during the oxidation of cholesterol. The optimal daily amount (100 mg) of Proanthodyn is included in six tablets of HEART SCIENCE. In addition to the protective actions of antioxidants, several other nutrients can contribute to healthier cholesterol ratios.
  • • Chromium is a trace mineral which functions to aid the entrance of glucose into cells. Six tablets of HEART SCIENCE provide 300 mcg of Chromium in the form of Chromate® Chromium Polynicotinate and Chromium Picolinate — the most bioactive forms of Chromium. Not many people are familiar with the vital role Copper plays in the body. This trace mineral is found in all tissues of the body, and is particularly concentrated in the heart. Copper is part of several enzymes, and, in this capacity, is necessary for the development and maintenance of the cardiovascular system, including the heart, arteries, and other blood vessels. Because of its role in elastin production, Copper deficiency can severely damage blood vessels and heart tissue. In fact, researchers have found an inverse relationship between Copper status and increased risk for heart damage.10
  • • L-Proline and L-Lysine are two natural amino acids which show exciting promise in helping to prevent fatty deposits in blood vessels. Researchers have recently identified a particle associated with LDL called apoprotein (a) which is believed to be a main culprit in plaque development. 17 Scientific investigation has revealed that the lipoprotein (a) particle has an adhesive quality that makes the lipoprotein fat globule stick inside blood vessels. The sticky fat globules accumulate, leading to fatty deposits in blood vessels and the subsequent clogging of the arteries. L-Proline and L-Lysine tend to form a barrierlike layer around the apoprotein (a) particle, helping to push it away from the blood vessel wall, and impeding deposit.21

    The Regulating Trio

    Three nutrients — Magnesium, Potassium, and Taurine — work closely together in the body to help maintain the normal electrical rhythm of the heart, promote proper fluid balance, and prevent excessive Calcium levels from building up in the heart and artery linings.

  • • Magnesium is one of the single most important nutrients for maintaining a healthy heart. It plays an extremely vital role in maintaining the electrical and physical integrity of the heart muscle. It has been well established that Magnesium deficiency predisposes humans to serious disruptions of normal cardiac rhythm. One theory is that because Magnesium has a relaxing effect on muscle tissue, inadequate Magnesium stores may make the coronary arteries more susceptible to muscle spasm.10 Too little Magnesium can cause a Calcium/Magnesium imbalance, which can lead to the influx of too much Calcium into heart cells, and potentiate spasms in heart tissue. Another point for consideration is that because it relaxes the blood vessels, Magnesium keeps these vessels open, allowing for maximum blood flow to the heart. Magnesium also has the unique ability to stop unnecessary blood clotting by helping to reduce platelet adhesion.31 Blood clots are naturally produced by the body as a protective device to stop excessive blood flow when the body is injured. The clotting response happens when the body senses that the normally smooth blood vessel linings are rough, indicating that there is a cut. However, sometimes the body mistakes the rough surface of plaque-covered arteries as cuts, and creates unnecessary blood clots. Or, if a high fat meal has just been eaten, tiny fat globules called chylomicrons enter the bloodstream and can cause platelets to become abnormally sticky, possibly creating clots. When these clots flow through the bloodstream and reach a part of the artery which has plaque buildup, normal blood flow is blocked, and the amount of blood which reaches the heart is severely compromised. Magnesium is also crucial for the entrance of Potassium — a key mineral for many bodily functions — into the cells. Even if the body’s Potassium stores are high, without enough Magnesium, the Potassium will not be able to enter the cells and be utilized by the body. 300 mg of Magnesium (75% of the U.S.RDA) are contained in each daily dose of HEART SCIENCE. Along with Magnesium, Potassium helps to regulate normal heartbeat and blood pressure, and is necessary for the contraction and relaxation of muscle tissue. Potassium and Sodium are present in all body fluids; Potassium is found primarily within cell fluids, while Sodium is usually present in fluids surrounding cells. Together, they function to maintain the normal balance and distribution of fluids throughout the body. The body ideally should have a Potassium/Sodium balance of about 1:1; however, because the body holds onto Sodium, yet eliminates Potassium quickly, it is important that the dietary ratio of these two minerals be at least 3:1. Unfortunately, the typical American diet, with its emphasis on processed, salty (Sodiumrich) foods and lack of fresh fruits and vegetables, severely alters the body’s natural Potassium/ Sodium balance. Diets in the United States are extremely high in Sodium — sometimes containing as much as 15 times the recommended daily intake! A high Sodium/low Potassium diet interferes with the normal regulation of heartbeat and blood pressure, and has been linked with elevated blood pressure.25 Taurine is an amino acid which helps normalize electrical and mechanical activity of the heart muscle by regulating Potassium flux in and out of the heart muscle cells.

    Artery Lining Protectors

    Your arteries form an integral part of your cardiovascular system, carrying blood away from the heart to nourish other parts of the body. In a healthy heart, blood surges through the arteries with every beat of the heart. The arteries expand with each pulse to accommodate the flow of blood. When arteries become hardened and narrowed by the build-up of plaque, they can’t expand and are not able to transport blood efficiently throughout the body. This inability to open up increases blood pressure, putting a strain on the heart as well as the arteries. HEART SCIENCE includes ingredients specifically geared to protect against plaque formation within arteries and maintain the flexibility of these vital blood vessels. N-Acetyl Glucosamine (NAG) is a key amino sugar which forms the building blocks of mucopolysaccharides. Mucopolysaccharides, which are long chain sugars, are an integral component of connective tissue. They combine to form gel-like matrixes which are present throughout tissues in the body, helping to maintain the elasticity of blood vessels which must continually adapt to the changing pressures of blood flow. Each daily dose of HEART SCIENCE provides 500 mg — a substantial amount — of this vital tissue building block. There is evidence indicating that Silicon, a natural mineral, may protect against plaque formation in the arteries. Silicon is found mainly in connective tissues, where it helps bind the body’s chemical matrix. Bound Silicon is found in high amounts in arterial walls. Researchers have found that there is a steady decline in the Silicon content of the aorta and other arteries as we age. This may be due to the low fiber content of the typical American diet, since fiber is a key dietary source of Silicon.23 HEART SCIENCE includes 400 mg of Horsetail herb extract, a natural source of Silicon. Hawthorn Berry is without question the herb most widely used to encourage normal heart function. The beneficial actions of Hawthorn Berry on cardiac function have been repeatedly demonstrated in experimental studies. Supplementation with Hawthorn Berry has been shown to improve both the blood supply to the heart by dilating coronary vessels, and the metabolic processes in the heart, resulting in normal, strong contractions of the heart muscle.34 Also, Hawthorn may inhibit the angiotensen converting enzyme, which is responsible for converting angiotensen I to angiotensen II, a powerful constrictor of blood vessels.34 Bromelain, a natural enzyme derived from pineapples, has become well-known for its neuromuscular relaxing properties. Researchers have reported favorable results when using Bromelain for soothing vascular linings. Initial research also indicates that Bromelain may break down fibrin, the glue which holds platelets together to form blood clots.6

    Capillary Strengtheners

    Capillaries are the smallest, yet some of the most important, blood vessels. If you think of your cardiovascular system as a series of roads which transport blood and oxygen, then your arteries are akin to interstate highways, your arterioles are the main city boulevards, and your capillaries are local residential streets. Capillaries are so small, in fact, that single red blood cells actually have to fold up to fit through them. Because of their tiny size and the intricate nature of their network throughout the body, capillaries are responsible for actually nourishing each individual tissue cell! Along the length of the capillaries are small openings called slit pores through which oxygen, glucose, and nutrients leave the capillaries and enter the surrounding interstitial fluid. From there, they cross cell membranes and nourish the cells. Similarly, the waste products of cells enter the fluid and cross over into the capillaries, where they are then transported to the liver and kidneys for disposal. If the capillary slit pores are torn or have lesions, then blood proteins and Sodium will leak out and cause the interstitial fluid to take on a more gel-like nature. This makes the transfer of oxygen and nutrients to the cells more difficult, as well as the disposal of cell waste products, turning the fluid into a stagnant swamp instead of a flowing river. In addition to its powerful antioxidant actions, Proanthodyn also helps protect collagen and elastin, the main constituents of tissue in the capillaries, and throughout the body. It is absolutely essential for capillary walls — which are only one cell thick — to be strong and stable, so that they do not allow blood proteins to leak into the interstitial fluid. Once the interstitial fluid takes on a gel-like consistency, the surrounding cells literally become starved from lack of nutrition. The exciting news is that the proanthocyanidins contained in Proanthodyn are among the few substances yet discovered which can help strengthen capillary walls, ensuring the liquid nature of the interstitial fluid.2 Plus, proanthocyanidins help keep capillary and artery walls flexible, allowing for proper blood flow to the heart.

    Heart Smarts

    The 1990’s mark a decade of increased awareness among Americans of important health issues. Much of the discussion has revolved around protecting that precious center of life we call the heart. Simple lifestyle change is one of the most effective ways to maintain and protect the functioning of the cardiovascular system. In order to take a holistic approach to heart care, make sure you include plenty of fresh fruits and vegetables (organic, if possible) in your diet, and cut down on fatty and cholesterol-forming foods. Reduce your salt and alcohol intake to a minimum. Try to get regular, sustained aerobic exercise for at least 30 minutes three times a week. Don’t smoke – or if you do smoke, try to eat even more fresh fruits and antioxidant-rich vegetables to counter the amount of free radicals being produced in your body. Lastly, consider adding Source Naturals HEART SCIENCE to your health regimen. HEART SCIENCE, the most comprehensive formula of its kind, provides targeted protection to the entire cardiovascular system. By approaching the promotion of normal heart function on five different levels — through the inclusion of ingredients which supply energy, decrease harmful homocysteine levels, fight cholesterol build-up, help regulate electrical rhythm, and protect artery and capillary linings — HEART SCIENCE is the perfect addition to a holistic approach to heart care.

    Source Naturals HEART SCIENCE™


    The Five Tiered Approach to Heart Health
    Six tablets contain:
    Vitamins and Minerals %USRDA
    Pro-Vit A (Beta Carotene) 45,000 IU 900%
    Vit B1 (Thiamine) 50 mg 3333%
    Vit B3 (Inositol Hexanicotinate) 500 mg 2500%
    Vit B6 (Pyridoxine HCl) 25 mg 1250%
    Coenzyme B6 (Pyridoxal-5-Phosphate)
    25 mg yielding: 16.9 mg of Vit B6 845% (Total Vitamin B6 Activity) (41.9 mg) (2095%)
    Vit B12 (Cyanocobalamin) 500 mcg 8333%
    Folic Acid 800 mcg 200%
    Vit C (Magnesium Ascorbate) 1500 mg 2500%
    Vit E (d-alpha Tocopheryl Succinate) 400 IU 1333%
    Chromium (ChromeMate® †Polynicotinate-150 mcg & Chromium Picolinate††-150 mcg) 300 mcg *
    Copper (Sebacate) 750 mcg 37.5%
    Magnesium (Ascorbate, Taurinate & Oxide) 300 mg 75%
    Potassium (Citrate) 99 mg *
    Selenium (L-Selenomethionine) 200 mcg *
    Silicon (From 400 mg of Horsetail Extract) 13mg *
    * U.S. RDA not established.
    Other Ingredients and Herbs
    Coenzyme Q10 (Ubiquinone) 60 mg
    L-Carnitine (L-Tartrate) 500 mg
    Hawthorn Berry Extract 400 mg
    Proanthodyn™ (Yielding 95 mg of Proanthocyanidins from grape seed extract) 100 mg
    L-Proline 500 mg
    L-Lysine (HCl) 500 mg
    NAG™ (N-Acetyl Glucosamine) 500 mg
    Bromelain (2000 G.D.U. per gram) 1200 G.D.U.
    Taurine (Magnesium Taurinate) 500 mg
    Horsetail Extract (Yielding 31 mg of Silica) 400 mg
    Inositol (Hexanicotinate) 50 mg

    Reference:
    1. Azuma, J., Sawamura, A., & Awata, N. (1992, Jan). “Usefulness of Taurine... and its Prospective Application.” Japanese Circulation Journal, 56(1), 95-9.
    2. Blazso, G and Gabor, M. (1980). “Odema-inhibiting Effect of Procyanidin.” Acta Physiologica Academiae ScientiarumHungaricae, 56(2), 235-240.
    3. Brattstrom, E. L, Hultberg, L. B., & Hardebo, E. J. (1985, Nov.). “Folic Acid Responsive Postmenopausal Homocysteinemia.” Metabolism, (34)11, 1073-1077.
    4. Colette, C., et al., (1988). “Platelet Function in Type I Diabetes: Effects of Supplementation with Large Doses of Vitamin E.” American Journal of Clinical Nutrition, 47, 256-61.
    5. England, M. R., et al. (1992, Nov. 4). “Magnesium Administration and Dysrhythmias...A Placebo-controlled, Double-blind, Randomized Trial.” Journal of the American Medical Association, 268(17), 2395-402.
    6. Felton, G. E. (1980, Nov.). “Fibrinolytic and Antithrombotic Action of Bromelain...” Medical Hypotheses (11)6, 1123-33.
    7. Grundy, S. M. (1993, Apr.). “Oxidized LDL and Atherogenesis: Relation to Risk Factors...” Clinical Cardiology, 16 (4 Suppl.I), I3-5.
    8. Hano, O. et al. (1994, June). “Coenzyme Q10 Enhances Cardiac Functional and Metabolic Recovery and Reduces Ca2+ Overload during Postischemic Reperfusion.” American Journal of Physiology, 266(6 Pt 2), H2174-81.
    9. Heineke, et al. (1972). “Effect of Bromelain (Ananase) on Human Platelet Aggregation.” Experientia V. 23, 844-45.
    10. Hendler, S. S. (1991). The Doctors’ Vitamin and Mineral Encyclopedia. NewYork: Fireside.
    11. Jandak, et al. (1988, Dec. 15). “Reduction of Platelet Adhesiveness by Vitamin E Supplementation in Humans.” Thrombosis Research 49(4), 393-404.
    12. Jialal, I., et al. (1991, Oct. 15). “Beta-Carotene Inhibits the Oxidative Modification of Low-density Lipoprotein.” Biochimica et Biophysica Acta, 1086(1), 134-8.
    13. Jialal, I. & Fuller, C. J. (1993, Apr. 16). “Oxidized LDL and Antioxidants.” Clinical Cardiology, Vol. 16 (Suppl. I), I6-9.
    14. Jialal, I., & Grundy, S.M. (1991, Feb.). “Preservation of the Endogenous Antioxidants in Low Density Lipoprotein...” Journal of Clinical Investigation, 87(2), 597-601.
    15. Kamikawa, T., et al. (1985). “Effects of Coenzyme Q10 on Exercise Tolerance...” American Journal of Cardiology, 56, 247-251.
    16. Kosolcharoen, P., et al. (1981, Nov.). “Improved Exercise Tolerance after Administration of Carnitine.” Current Therapeutic Research, 753-764.
    17. Lawn, R. (1992, June). “Lipoprotein (a) in ...” Medicine, 12-18.
    18. Mortensen, S.A.et al. (1985). “Long-term coenzyme Q10 therapy: A major advance in the management of resistant myocardial failure.” Drugs Exp. Clin. Res., 11(8), 581-93.
    19. Nayler, W. G. (1980). “The Use of Coenzyme Q10 to Protect Ischemic Heart Muscle.” In: Yamamura Y., Folkners K., Ito Y., eds. Biomedical and Clinical Aspects of Coenzyme Q, Vol. 2, Amsterdam: Elsevier/North-Holland Biochemical Press, 409-425.
    20. Press, R.I., & Geller, J., (1990, Jan.). “The Effect of Chromium Picolinate on Serum Cholesterol and Apolipoprotein Fractions in Human Subjects.” Western Journal of Medicine, 152, 41-45.
    21. Rath, M. (1993). Eradicating Heart Disease. San Francisco: Health Now.
    22. Rossi, C. S., & Silliprandi, N. (1982, Feb.). “Effect of Carnitine on Serum HDL Cholesterol: Report of Two Cases.” Johns Hopkins Medical Journal, 150(2), 51-4.
    23. Schwarz, K. (1977, Feb. 2). “Silicon, Fibre, and Atherosclerosis.” The Lancet, 454-456.
    24. Selhub, J., et al. (1995, Feb. 2). “Association Between Plasma Homocysteine Concentrations and Extracranial Carotid-artery Stenosis.” New England Journal of Medicine, 332(5), 286-291.
    25. Somer, Elizabeth. (1992). The Essential Guide to Vitamins and Minerals. New York: Health Media of America.
    26. Stampfer, M. J., et al. (1992, Aug. 19). “A Prospective Study of Plasma Homocyst(e)ine...” Journal of the American Medical Association, 268(7), 877-881.
    27. Suadicani, P., Hein, H. O., & Gyntelberg, F. (1992, Sept.). “Serum Selenium Concentration...in a Prospective Cohort Study of 3000 Males.” Atherosclerosis, 96(1), 33-42.
    28. Thomas, C. L. (Eds.). (1985). Taber’s Cyclopedic Medical Dictionary, (15th ed.). Philadelphia: F.A. Davis Company.
    29. Tsuyusaki, T. et al. “Mechanocardiography of ischemic or hypertensive heart failure,” in Yamaura Y et al., Biomed. & Clin. Aspects of Coenzyme Q.2 Amsterdam, Elsevier/North Holland Biomedical Press, 1980, 273-88.
    30. Verlangieri, A. J., & Stevens, J. W. (1979). “L-Ascorbic Acid: Effects on Aortic Glycosaminoglycan S Incorporation...” Blood Vessels, 16(4), 177-185.
    31. Werbach, M. R. (1987). Nutritional Influences on Illness: A Sourcebook of Clinical Research. New Canaan: Keats Publishing, Inc.
    32. White, R.R., et al. (1988, Jul-Aug.). “Bioavailability of 125I Bromelain after Oral Administration to Rats.” Biopharmaceutics and Drug Disposition, 9(4), 397-403.
    33. Whitney, E. N., Hamilton, Nunnelly, E. M. (1984). Understanding Nutrition, (3rd ed.). St. Paul: West Publishing Company.
    34. Willard, Terry, Ph.D. (1992). Textbook of Advanced Herbology. Calgary, Alberta, Canada: Wild Rose College of Natural Healing.
    35. Xiang, H., Heyliger, et al. (1988, Nov.). “Effect of Myo-inositol and T3 on Myocardial Lipids and Cardiac Function in Streptozocin-induced Diabetic Rats.” Diabetes, 37(11), 1542-8.



    --
    VitaNet ®
    VitaNet ® Staff

    (https://vitanetonline.com:443/forums/Index.cfm?CFApp=1&Message_ID=155)


    Ester E - Natural E for Cardiovascular and Antioxidant Support
    TopPreviousNext

    Date: June 02, 2005 09:38 AM
    Author: Darrell Miller (dm@vitanetonline.com)
    Subject: Ester E - Natural E for Cardiovascular and Antioxidant Support

    We’ve all heard of vitamin E but did you know there are many different forms of this essential nutrient? Ester-E® is a unique form of vitamin E that occurs when natural d-alpha tocopherol combines with a phosphate molecule. Vitamin E is one of the body’s chief antioxidants and the phosphate form, Ester-E®, offers advanced antioxidant protection to body cells. Vitamin E also helps maintain cardiovascular health, protects the liver from toxins, enhances circulation and supports healthy immune system function. Source Naturals ESTER-E® is a patent-protected, body-ready form of vitamin E. Make Ester-E® part of your health plan for more complete nutrition.

    Vitamin E was named tocopherol, from Greek tocos meaning “offspring” and phero meaning “to bring forth,” because it was originally discovered as a nutrient essential for reproduction. Vitamin E became the name given to a group of eight fat-soluble compounds–four tocopherols (alpha, beta, gamma, and delta) and four tocotrienols (alpha, beta, gamma, and delta). It is an essential fat-soluble vitamin that naturally occurs in many foods–especially vegetable oils. In 2003, the first report of naturally occurring vitamin E phosphate was published. ESTER-E® (vitamin E phosphate) occurs when a phosphate molecule combines with a natural tocopherol resulting in a unique form of vitamin E.

    Vitamin E Deficiency

    Researchers previously thought that deficiencies of vitamin E were rare but a large population- based study showed that sub-optimal levels might be quite common. According to this study, African-Americans feel most of the impact, with 41% having sub-optimal levels of vitamin E in their blood, compared with 28% of Mexican Americans and 26% of whites. Optimal level refers to levels in research studies associated with cardiovascular benefits. Many people, especially African- Americans, may benefit from the extra cardiovascular support offered by vitamin E.

    Antioxidant and Cardiovascular Support

    Vitamin E is referred to as an antioxidant even though some forms can change into celldamaging free radicals, creating a “pro-oxidant.” Free radicals are unpaired electrons that can damage living cells and compromise the proper function of tissues and organs. Vitamin E phosphate may be the previously unrecognized form of vitamin E that allows alpha-tocopherol to be stored and transported without generating free radicals. The phosphate form of vitamin E appears to have a detergent action within the cell membrane, which creates a barrier that may keep free radicals from transferring from one polyunsaturated fatty acid to another. Until its discovery, researchers wondered how vitamin E could be both an antioxidant and an oxidizer. Antioxidants neutralize destructive free radicals and support cardiovascular health by preventing the oxidation of cholesterol. Oxidized cholesterol is an unstable molecule that damages the integrity of arteries. Preliminary studies show that vitamin E phosphate may inhibit Foam cell formation in in-vitro cell cultures. Foam cells are macrophages that pick up oxidized lipids and form fatty streaks in the artery walls, contributing to plaque formation.

    Nutrition for Wellness

    Taking personal responsibility for your health is at the heart of the wellness revolution. At Source Naturals we are committed to bringing you the finest nutrients modern research has to offer. ESTER-E® is the newest addition to our superior line of vitamin E products designed to help you live a longer, healthier life.

    References:
    Ford, E; Sowell, A. Serum a-tocopherol status in the United States Population: findings from the third national health and nutrition examination survey. American Journal of Epidemiology 150 (3):290-300. ©1999 The Johns Hopkins University School of Hygiene and Public Health. BM, Rezk. 2004. The extraordinary antioxidant activity of vitamin E phosphate. Biochim Biophys Acta 1683 (1-3): 16-21. Munteanu, A. 2004. Modulation of cell proliferation and gene expression by a-tocopherol phosphates: relevance to atherosclerosis and inflammation. Biochemical and Biophysical Research Communication 318:311-16. ©2004, Elsevier Inc. Ester-E® is a licensed trademark of Zila Nutraceuticals, Inc. Ester-E food supplement and the process of making it are covered by U.S. Patents 6,579,995 and 5,387,579. Other USA and foreign patents pending.



    --
    VitaNet ®
    VitaNet ® Staff

    (https://vitanetonline.com:443/forums/Index.cfm?CFApp=1&Message_ID=145)



  • VitaNet ® LLC. Discount Vitamin Store.