SearchBox:

Search Term: " Yuan "

  Messages 1-3 from 3 matching the search criteria.
Men, here's a diet plan for a better memory: leafy greens, darkorange and red vegetables, berries, and a glass of OJ Darrell Miller 4/27/19
Astragalus Fact Sheet Darrell Miller 12/7/05
KudZu, Treatment of alcohol dependence or alcohol abuse Darrell Miller 5/19/05



Honso usa Corydalis and Angelica (Yuan Hu Formula)
   100sg $33.90 34% OFF $ 22.37

Men, here's a diet plan for a better memory: leafy greens, darkorange and red vegetables, berries, and a glass of OJ
TopPreviousNext

Date: April 27, 2019 10:00 AM
Author: Darrell Miller (support@vitanetonline.com)
Subject: Men, here's a diet plan for a better memory: leafy greens, darkorange and red vegetables, berries, and a glass of OJ





According to a recent Harvard University study, the optimal diet for men who want to maintain strong cognitive health consists of eating leafy green vegetables, berries, orange and red vegetables, and orange juice. Researcher Changzheng Yuan studied 28,000 men over the course of 20 years, tracking their dietary habits and periodically testing their cognitive skills. The group that consumed the most vegetables, about six servings per day, performed better on thinking skills tests than the group that ate half that. There was also a positive association found between eating fruits and overall brain health.

Key Takeaways:

  • One study, centering on cognition, set out to track nearly 3000 men for two decades.
  • All the study participants were human adult, male professionals in the health field.
  • Every participant was questioned about specific food usage upon their entry and at four year intervals thereafter.

"Yuan noted that participants who ate all these fruits and vegetables at the start of the study – 20 years ago – enjoyed better cognitive and memory skills."

Read more: https://www.naturalnews.com/2019-03-05-a-diet-plan-for-a-better-memory.html

(https://vitanetonline.com:443/forums/Index.cfm?CFApp=1&Message_ID=6204)


Astragalus Fact Sheet
TopPreviousNext

Date: December 07, 2005 01:15 PM
Author: Darrell Miller (dm@vitanetonline.com)
Subject: Astragalus Fact Sheet

Astragalus Fact Sheet

Neil E. Levin, CCN, DANLA 02/10/05

LIKELY USERS: Everyone seeking a healthy immune system; Those lacking energy

KEY INGREDIENTS: Astragalus Root Extract Powder 70% polysaccharides (200 mg)

MAIN PRODUCT FEATURES: A Chinese “tonic herb” used in Traditional Chinese Medicine for night sweats, diarrhea and lack of energy. Tonic herbs are often known as “adaptogens”, helping the body adapt to stresses and modulating immune system responses. Some reports credit Astragalus with shortening colds and strengthening the heart.Astragalus additionally contains triterpene glycosides, also known as astragalosides.

ADDITIONAL PRODUCT INFORMATION: Vegetarian formula.May be useful to maintain the patient’s immunity in dialysis patients, those with liver problems and those who have suffered from strokes, according to Chinese studies (not as a treatment for those conditions!).

SERVING SIZE & HOW TO TAKE IT: For everyday use take one to five caps per day, either with meals or on an empty stomach.

COMPLEMENTARY PRODUCTS: Immune Renew, Inositol Hexaphosphate (IP-6), I3C, Pometrol, mixed carotenoids and other antioxidants.

CAUTIONS: Pregnant & lactating women, children and people using prescription drugs should consult their physician before taking any dietary supplement. Do not take with AIDS drugs or if you have an autoimmune disease, though there is some (not enough) evidence that Astragalus may balance immune function for at least one autoimmune disorder. This information is based on my own knowledge and these references, but should not be used as diagnosis, prescription or as specific product claims.

Disclaimer: These statements have not been evaluated by the FDA. This product is not intended to diagnose, treat, cure or prevent any disease.

REFERENCES: 1. Ooi VE, Liu F. Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr Med Chem. 2000 Jul;7(7):715-29.
2. Zhang YD, Shen JP, Zhu SH, Huang DK, Ding Y, Zhang XL. Effects of astragalus (ASI, SK) on experimental liver injury Yao Xue Xue Bao. 1992;27(6):401-6. Chinese. PMID: 1442065
3. Sheng BW, Chen XF, Zhao J, He DL, Nan XY. Astragalus membranaceus reduces free radical-mediated injury to renal tubules in rabbits receiving high-energy shock waves. Chin Med J (Engl). 2005 Jan;118(1):43-9. PMID: 15642225
4. Yesilada E, Bedir E, Calis I, Takaishi Y, Ohmoto Y. Effects of triterpene saponins from Astragalus species on in vitro cytokine release. J Ethnopharmacol. 2005 Jan 4;96(1-2):71-7. PMID: 15588652
5. Li C, Cao L, Zeng Q. Astragalus prevents diabetic rats from developing cardiomyopathy by downregulating angiotensin II type2 receptors' expression. J Huazhong Univ Sci Technolog Med Sci. 2004;24(4):379-84. PMID: 15587404
6. Wang SH, Wang WJ, Wang XF, Chen W. [Effect of Astragalus polysaccharides and berberine on carbohydrate metabolism and cell differentiation in 3T3-L1 adipocytes]. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2004 Oct;24(10):926-8. Chinese. PMID: 15553830
7. Shao BM, Dai H, Xu W, Lin ZB, Gao XM. Immune receptors for polysaccharides from Ganoderma lucidum. Biochem Biophys Res Commun. 2004 Oct 8;323(1):133-41. PMID: 15351712
8. Mao SP, Cheng KL, Zhou YF. [Modulatory effect of Astragalus membranaceus on Th1/Th2 cytokine in patients with herpes simplex keratitis]. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2004 Feb;24(2):121-3. Chinese. PMID: 15015443
9. Guo FC, Williams BA, Kwakkel RP, Li HS, Li XP, Luo JY, Li WK, Verstegen MW. Effects of mushroom and herb polysaccharides, as alternatives for an antibiotic, on the cecal microbial ecosystem in broiler chickens. Poult Sci. 2004 Feb;83(2):175-82.
10. Shao BM, Xu W, Dai H, Tu P, Li Z, Gao XM. A study on the immune receptors for polysaccharides from the roots of Astragalus membranaceus, a Chinese medicinal herb. Biochem Biophys Res Commun. 2004 Aug 6;320(4):1103-11. PMID: 15249203
11. Zhang BQ, Hu SJ, Shan QX, Sun J, Xia Q. [Relaxant effect of Astragalus membranaceus on smooth muscle cells of rat thoracic aorta.] Zhejiang Da Xue Xue Bao Yi Xue Ban. 2005 Jan;34(1):65-8. Chinese. PMID: 15693127
12. Luo Y, Qin Z, Hong Z, Zhang X, Ding D, Fu JH, Zhang WD, Chen J. Astragaloside IV protects against ischemic brain injury in a murine model of transient focal ischemia. Neurosci Lett. 2004 Jun 17;363(3):218-23. PMID: 15182947
13. Tan BK, Vanitha J. Immunomodulatory and antimicrobial effects of some traditional chinese medicinal herbs: a review. Curr Med Chem. 2004 Jun;11(11):1423-30.
14. Shu HY. Oriental Materia Medica: A Concise Guide. Palos Verdes, CA: Oriental Healing Arts Press, 1986, 521–3. 15. Klepser T, Nisly N. Astragalus as an adjunctive therapy in immunocompromised patients. Alt Med Alert 1999;Nov:125–8 [review].
16. Qun L, Luo Q, Zhang ZY, et al. Effects of astragalus on IL-2/IL-2R system in patients with maintained hemodialysis. Clin Nephrol 1999;52:333–4 [letter].
17. Tang W, Eisenbrand G. Chinese Drugs of Plant Origin. Berlin: Springer Verlag, 1992, 1056.
18. Li SQ, Yuan RX, Gao H. Clinical observation on the treatment of ischemic heart disease with Astragalus membranaceus. Chung Kuo Chung His I Chieh Ho Tsa Chih 1995;15:77–80 [in Chinese].
19. Chen LX, Liao JX, Guo WQ. Effects of Astragalus membranaceus on Left Ventricular Function and Oxygen Free Radical in Acute Myocardial Infarction Patients and Mechanism of Its Cardiotonic Action. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih. Mar1995;15(3):141-3.
20. Lei ZY, Qin H, Liao JZ. Action of Astragalus membranaceus on Left Ventricular Function of Angina Pectoris. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih. Apr1994;14(4):199-202,195.
21. Geng CS, et al. Advances in Immuno-pharmacological Studies on Astragalus membranaceus. Chin J Integ Trad West Med. 1986;6:62.
22. Shi HM, et al. Intervention of Lidocaine and Astragalus membranaceus on Ventricular Late Potentials. Zhongguo Zhong Xi Yi Jie He Za Zhi. Oct1994;14(10):598-600.
23. Griga IV. Effect of a Summary Preparation of Astragalus cicer on the Blood Pressure of Rats with Renal Hypertension and on the Oxygen Consumption by the Tissues. Farm Zh. 1977;6:64-66.
24. Kurashige S, Akuzawa Y, Endo F. Effects of astragali radix extract on carcinogenesis, cytokine production, and cytotoxicity in mice treated with a carcinogen, N-butyl-N'-butanolnitrosoamine. Cancer Invest. 1999;17(1):30-5.
25. Wei H, Sun R, Xiao W, et al. Traditional Chinese medicine Astragalus reverses predominance of Th2 cytokines and their up-stream transcript factors in lung cancer patients. Oncol Rep. Sep2003;10(5):1507-12.
26. PDR for Herbal Medicines, 2nd edition. Montvale, NJ: Medical Economics Company; 2000:56. American Herbal Products Association. Use of Marker Compounds in Manufacturing and Labeling Botanically Derived Dietary Supplements. Silver Spring, MD: American Herbal Products Association; 2001.



--
Vitanet ®

(https://vitanetonline.com:443/forums/Index.cfm?CFApp=1&Message_ID=984)


KudZu, Treatment of alcohol dependence or alcohol abuse
TopPreviousNext

Date: May 19, 2005 09:29 AM
Author: Darrell Miller (dm@vitanetonline.com)
Subject: KudZu, Treatment of alcohol dependence or alcohol abuse

For millennia, folk medicines have been used to treat ‘‘alcohol addiction’’ in China. A thorough literature search of the ancient Chinese pharmacopoeias revealed a long list of traditional remedies, including the 16 ‘‘stop-drinking’’ formulae of Sun Simiao (ca. 600 AD) and the ‘‘anti-alcohol addiction’’ formula of Li DongYuan (ca. 1200 AD), 2 of the most reputed ‘‘medical doctors’’ in the history of Traditional Chinese Medicine. However, like those discovered by the ancient Romans,11 most of the ancient Chinese remedies for ‘‘alcohol addiction’’ were based on psychological aversion: to deter patients from further drinking by associating alcohol drinking with an unpleasant experience. Interestingly, as time went by, treatments based solely on psychological aversion were gradually eliminated from the ancient Chinese pharmacopoeias, presumably because of their ineffectiveness and/or undesirable side effects. The only remedies that have survived this historical trial-anderror scrutiny are those consisting the root (Radix puerariae, RP) or flower (Flos puerariae, FP) of Pueraria lobata (a medicinal plant known to the West as kudzu). It was on the basis of this historical backdrop, we initiated the search of safe and efficacious anti-dipsotropic (alcohol intake suppressive) agents from RP. This approach has led to the discovery of daidzin,12 an isoflavone that has since been shown to reduce alcohol drinking in all alcohol preferring animal models tested to date.

Alcohol abuse

Alcohol abuse and alcohol dependence (i.e., alcoholism) are serious public health problems of modern society. In the United States alone, an estimated 13 million adults exhibit symptoms of alcohol dependence due to excessive alcohol intake, and an additional 7 million abuse alcohol without showing symptoms of dependence according to U.S. Government projections from studies conducted in the mid-1980s. Alcohol dependence and abuse are very expensive: in economic and medical terms, it will cost the U.S. well over $200 billion in 1991 with no prospect of falling or leveling off. The social and psychological damages inflicted on individuals as a consequence of alcohol abuse, e.g., children born with fetal alcohol syndrome (FAS) and victims of alcohol-related accidental death, homicide, suicide, etc., are immense.

While it is generally accepted that alcoholism and alcohol abuse are afflictions with staggering international economic, social, medical, and psychological repercussions, success in preventing or otherwise ameliorating the consequences of these problems has been an elusive goal. Only very recently the public view that alcoholism and alcohol abuse are remediable solely by moral imperatives has been changed to include an awareness of alcoholism and alcohol abuse as physiological aberrations whose etiology may be understood and for which therapy may be found through scientific pursuits. Both alcohol abuse and dependence arise as a result of different, complex, and as yet incompletely understood processes. At present, alcohol research is in the mainstream of scientific efforts.

Our studies on alcohol (ethanol or ethyl alcohol) have been based on the hypothesis that its abuse can ultimately be understood and dealt with at the molecular level. Such a molecular understanding, if achieved, would provide a basis for the identification and development of appropriate therapeutic agents. Our view hypothesizes that the clinical manifestations of alcoholism and alcohol abuse are the consequence of aberrations or defects within one or more metabolic pathways, affected by the presence of ethyl alcohol. In order to test this hypothesis, our initial studies focused on physical, chemical, and enzymatic properties of human alcohol dehydrogenase (ADH), the enzyme that catalyzes alcohol oxidation according to the following reaction formula:

CH.sub.3 CH.sub.2 OH+NAD.sup.+ .fwdarw.CH.sub.3 CHO+NADH

In addition, our studies more recently have focused on the aldehyde dehydrogenases (ALDH) which catalyze the subsequent step in the major pathway of ethanol metabolism according to the following reaction formula:

CH.sub.3 CHO+NAD.sup.+ .fwdarw.CH.sub.3 COOH+NADH

Prior to our research (for example, see Blair and Vallee, 1966, Biochemistry 5:2026-2034), ADH in man was thought to exist in but one or two forms, primarily in the liver, where it was considered the exclusive enzyme for the metabolism of ethanol. Currently, four different classes of ADH encompassing over twenty ADH isozymes have been identified and isolated from human tissues. There is no reason to believe that all of these ADH isozymes are necessary to catalyze the metabolism of a single molecule, ethanol, even though all of them can interact with it. We have proposed that the normal function of these isozymes is to metabolize other types of alcohols that participate in critical, physiologically important processes, and that ethanol interferes with their function (Vallee, 1966, Therapeutic Notes 14:71-74). Further, we predicted that individual differences in alcohol tolerance might well be based on both qualitative and quantitative differences in isozyme endowment (Vallee, 1966, supra).

Our research has established the structures, properties, tissue distribution, and developmental changes for most of the ADH isozymes, which while structurally quite similar, and presumed to have evolved from a common precursor, are functionally remarkably varied. Of the more than 120 publications from our laboratory that relate to the above subjects, the following, arranged in six categories, are especially useful for instruction in the prior art.

  • Kudzu Recovery 60ct

  • Kudzu Recovery 120ct

  • Kudzu Root Extract 50caps

  • Kudzu Root Extract from Solaray 60ct



  • Recover from stress, lessen desire for alcohol, primary cleansing, and liver support


  • --
    VitaNet ®
    VitaNet ® Staff

    (https://vitanetonline.com:443/forums/Index.cfm?CFApp=1&Message_ID=79)



    VitaNet ® LLC. Discount Vitamin Store.