SearchBox:

Search Term: " alcohol-induced "

  Messages 1-5 from 5 matching the search criteria.
Did you know that glutathione is not only great for liver health, but it also promotes beautiful, radiant skin? Darrell Miller 12/7/23
Oat extract can protect against alcohol-induced liver damage Darrell Miller 5/2/19
Cannabis can reverse the effects of alcohol-induced liver damage Darrell Miller 4/23/19
Artichoke extract found to lower high cholesterol and protect the liver from alcohol damage Darrell Miller 9/22/17
Curcumin - Turmeric Extract Darrell Miller 8/19/05




Did you know that glutathione is not only great for liver health, but it also promotes beautiful, radiant skin?
TopPreviousNext

Date: December 07, 2023 12:12 PM
Author: Darrell Miller (support@vitanetonline.com)
Subject: Did you know that glutathione is not only great for liver health, but it also promotes beautiful, radiant skin?

Did you know that glutathione is not only great for liver health, but it also promotes beautiful, radiant skin?

Glutathione (GSH), often considered as an amino acid but actually a tripeptide, is an antioxidant primarily synthesized in the liver. Composed of cysteine, glutamic acid, and glycine, it plays a crucial role in the synthesis and repair of DNA and protein, as well as the synthesis of prostaglandins. With its involvement in various functions like amino acid transport, toxin and carcinogen metabolism, immune system function, prevention of oxidative cell damage, and activation of enzymes, it is undoubtedly the most important tripeptide in the body.

While the benefits of supplementing with glutathione are numerous, two particularly compelling reasons are its positive impact on liver health and beautiful skin, which are the key focus of this article. However, before diving into the specifics of liver health and skin benefits, it's important to review the data on glutathione depletion and absorption.

GSH depletion can occur due to various oxidative stressors such as radiation, v.infections, enviro toxins, household chemicals, heavy metals, surgery, inflammation, burns, septic shock, and dietary deficiencies of GSH precursors and enzyme cofactors. Additionally, research suggests that GSH levels tend to decline with age.

The bioavailability of glutathione as a dietary supplement has encountered challenges in the past. Studies in the 1990s suggested that oral GSH might be inactivated by peptidases in the gut, as the levels of glutathione in the body did not seem to correlate with dietary intake, despite its presence in fruits, vegetables, and meats. Moreover, previous studies showed no significant increase in blood GSH levels when subjects were given high doses of 1,000-3,000 mg. As a result, alternative strategies like supplementation with NAC were used to boost GSH levels.

In 2014, something interesting happened that changed the way we look at the bioavailability of GSH. A groundbreaking study published in the Journal of Agricultural and Food Chemistry shed new light on the old research. This study showed that GSH, when taken in its intact form as OPITAC, a yeast-derived glutathione by Kohjin/Mitsubishi, can actually be rapidly transported across intestinal epithelial cells. Once inside, it gets rapidly converted into oxidized glutathione (GSSG) and accumulates in red blood cells and the liver, with only a small presence in plasma. So, although the GSH was indeed absorbed, it didn't show up in blood plasma because it transformed into GSSG and stored in the red blood cells and the liver. The bottom line is, supplementing with GSH is an effective way to boost GSH levels in the body.

This finding was further confirmed in another study that described how OPITAC, as a yeast-derived glutathione by Kohjin/Mitsubishi, is directly absorbed in its electrochemically reduced form in the intestine, then transported in the blood in bound forms, and eventually deposited into the liver in its reduced form.

But here's where it gets even more significant. A six-month randomized, double-blinded, placebo-controlled trial involving 54 adults was conducted to investigate the effects of oral GSH supplementation (250 or 1,000 mg/day, as OPITAC glutathione, Kohjin/Mitsubishi) on GSH levels in various parts of the body, including blood, erythrocytes, plasma, lymphocytes, and exfoliated buccal mucosal cells. The results were astounding. After one, three, and six months, GSH levels in blood increased significantly compared to baseline in both dosage groups. At the six-month mark, GSH levels skyrocketed 30-35 percent in erythrocytes, plasma, and lymphocytes, and a mind-boggling 260 percent in buccal cells in the 1,000 mg group (P < 0.05). Even in the low-dose group, GSH levels in blood and erythrocytes increased by 17 and 29 percent, respectively (P < 0.05). This research clearly demonstrates that supplementation with GSH is not only effective for increasing GSH levels in the body but also for maintaining them.

So, to sum it all up, the evidence speaks volumes - supplementing with GSH can have a profound impact on your body's GSH levels, and trust me, that's definitely a good thing!

Liver Health

When it comes to our well-being, the liver is a true superhero. Let's dive into some fascinating details about this essential organ.

Did you know that the liver is not only the largest reservoir of GSH (glutathione) but also a major site of GSH manufacture in the body? Pretty impressive, right? Special cells in the liver work tirelessly to synthesize GSH, which plays a crucial role in detoxification. Speaking of detoxification, the liver is a champion in this field. Its cells have sophisticated mechanisms to break down toxic substances, be it internal or external compounds.

During the detoxification process, the liver attaches or conjugates the toxins to water-soluble substances. This attachment makes the toxic molecules more water-soluble, less harmful, and easier to eliminate via urine or bile. In fact, glutathione conjugation produces water-soluble mercaptates that are excreted via the kidneys, effectively detoxifying acetaminophen and nicotine. Isn't it amazing how this process helps our bodies get rid of harmful substances?

But that's not all. Adequate levels of glutathione are crucial for the elimination of fat-soluble compounds, particularly heavy metals like mercury and lead. What's more, GSH serves as a cofactor for various peroxidase enzymes, aiding in the detoxification of peroxides generated from oxygen radical attacks on biological molecules. It also assists transhydrogenase enzymes in reducing oxidized centers on DNA, proteins, and other biomolecules. Talk about a multitasker!

The practical significance of this liver superhero was demonstrated in a study involving workers exposed to lead. A group of five workers received GSH at 200 mg/day for 30 days, while five others served as the control group. The results were striking. The group receiving GSH showed a significant increase in ALA dehydratase activity (which is inhibited by lead) compared to the control group (p < 0.05). This indicates that GSH could be a valuable solution for treating patients with lead poisoning.

So, let's take a moment to appreciate the remarkable liver and its incredible role in maintaining our health and well-being!

Alcohol Intoxication

Alcohol consumption is widely recognized for its capability to induce hepatic steatosis, also known as fatty liver disease, and disrupt biomembranes due to hepatic lipid peroxidation. This can lead to various lifestyle-related diseases and even hepatic cirrhosis by diminishing hepatic physiological function. Nevertheless, animal studies have shown that hepatic damage caused by alcohol intoxication can be mitigated by glutathione (GSH), a powerful antioxidant found in cells.

To further investigate the impact of GSH supplementation on the effects of alcohol intake, a human crossover comparative study was conducted. The study involved twenty healthy men and women who were grouped into three categories: placebo, 100 mg GSH (as OPITAC glutathione, Kohjin/Mitsubishi), and 30 mg curcumin. The study evaluated laboratory parameters, including breath alcohol concentration at different time intervals (20, 60, 120, and 180 minutes post-alcohol consumption) as measured by an alcohol checker. Additionally, subjective feelings were assessed through a questionnaire. During the study, all participants consumed whiskey in a quantity equal to their body weight multiplied by 1.25 mL, and were instructed to drink the entire sample within 10 minutes.

The results revealed that the breath alcohol concentration in the group supplemented with GSH significantly decreased compared to the placebo and curcumin groups at 20 (p<0.01), 60 (p<0.01), 120 (p<0.05), and 180 (p<0.08) minutes post-consumption. Furthermore, the GSH group reported lower levels of "sleepiness," "headache," and "upset stomach" in the subjective feeling questionnaire. Importantly, the concentration of aspartate aminotransferase (AST), an indicator of alcohol-induced organ damage, was significantly lower in the GSH group after two months compared to the placebo group.

The oral intake of GSH has demonstrated its effectiveness in reducing alcohol consumption-related stress and improving long-term hepatic function. These findings highlight the potential benefits of GSH supplementation in alleviating the detrimental effects of alcohol intoxication on the liver.

Nonalcoholic fatty liver disease

Nonalcoholic fatty liver disease (NAFLD) is a condition characterized by the build-up of fat in the liver of individuals who consume little or no alcohol. Unfortunately, NAFLD is quite common, affecting nearly one-third of all American adults. Interestingly, it often presents without readily apparent signs or symptoms, sometimes resulting in complications, and can lead to liver inflammation and scarring as the fat accumulates. Additionally, NAFLD is typically associated with conditions such as insulin resistance, central obesity, reduced glucose tolerance, type-2 diabetes, and elevated triglyceride levels.

Recognizing the substantial role glutathione (GSH) plays in phase 2 liver detoxification, a pilot trial was conducted to examine the therapeutic effects of GSH supplementation in patients with NAFLD. The trial included 29 individuals, and the patients were provided with daily oral supplementation of GSH at a dose of 300 mg (in the form of OPITAC glutathione, from Kohjin/Mitsubishi). The patients' clinical parameters were assessed before and after the GSH supplementation, and liver fat and fibrosis were quantified as well. The primary goal of the study was to determine any changes in alanine aminotransferase (ALT) levels. The results indicated a significant decrease in ALT levels following the GSH supplementation. Furthermore, triglycerides, non-esterified fatty acids, and ferritin levels also showed a reduction. This pilot study provides promising evidence for the potential therapeutic effects of oral glutathione administration, even at practical doses, in patients diagnosed with NAFLD. However, further investigation through large-scale clinical trials is necessary to validate its efficacy.

In summary, NAFLD is a prevalent condition with potential serious consequences, but studies like the aforementioned pilot trial shed light on potential treatment options such as GSH supplementation. The findings demonstrate the need for continued research in order to provide more conclusive evidence and expand our understanding of NAFLD management.

Beautiful Skin

By activating melanocytes in the skin, there is a notable increase in melanin formation, resulting in various blemishes such as freckles, pigmentation, and UV-induced skin spots, commonly known as age spots or liver spots. This is especially prominent after prolonged sun exposure and tanning. Age spots appear when melanin becomes concentrated or "clumped" in areas that have had years of frequent sun exposure. Luckily, there are materials like glutathione that can prevent or improve such pigmentation-related skin conditions.

Another aspect to consider is skin pigmentation, wrinkles, and pores. In a study conducted with eight women in their 30s or early 40s, each supplemented with 100 mg/day of GSH (as OPITAC glutathione, Kohjin/Mitsubishi) for two months, their skin conditions were evaluated using the Robo Skin Analyzer. Several parameters were analyzed, including skin brightness, the amount and area of skin pigmentation, number of pores, and number of wrinkles under the eyes. It was observed that all subjects' skin brightness improved when measured on the second day of the study. Additionally, over the course of the two months, both the amount and area of skin pigmentation decreased, leading to an improvement in blemishes and pigmentation. Not only did glutathione exhibit a whitening effect, but it also reduced the number of wrinkles under the eyes and minimized pores.

Furthermore, a randomized, double-blind, two-arm, placebo-controlled study was conducted with 60 otherwise healthy medical students. The purpose was to investigate whether supplementing with 500 mg of glutathione daily for four weeks would affect the skin melanin index compared to a placebo. Melanin indices were measured at six different sites on the body. The results demonstrated that melanin indices consistently decreased at all six sites in subjects who received glutathione after four weeks. The reductions were statistically significant compared to those who received the placebo at two sites: the right side of the face and the sun-exposed left forearm (p = 0.021 and 0.036, respectively). This improvement was likewise reflected in the reduction of UV spots. Importantly, both glutathione and placebo were well-tolerated. In conclusion, oral administration of glutathione leads to a lightening of skin color in the tested subjects.

Skin Lightening

Skin lightening is a process that is of interest to many individuals who seek to achieve a more even and radiant complexion. In recent studies, the use of a lozenge containing GSH 500 mg was explored as a means of skin lightening through an open-label, single-arm trial. The focus of this trial was to evaluate the buccal mucosa as a route for GSH administration and its potential in relation to skin lightening. It is worth noting that substances absorbed through the buccal route have the advantage of entering directly into the systemic circulation, effectively bypassing the gastrointestinal tract.

The trial involved thirty Filipino females with Fitzpatrick skin types IV or V who received a daily glutathione-containing lozenge for eight weeks. The results from this trial demonstrated a significant decrease in melanin indices from baseline to endpoint. What is fascinating is that this visible change became evident in as little as two weeks. It is important to highlight that during this trial, there were no recorded serious adverse events, and the laboratory examination findings remained normal. Based on these findings, the researchers concluded that the lozenge containing glutathione was deemed safe and effective in lightening the skin of Filipino women.

In addition to the aforementioned buccal route administration, another interesting approach that emerged from the studies is the topical application of GSH. A double-blind randomized clinical trial35 conducted in Yogyakarta, Indonesia, involved 74 healthy Indonesian women, with an average age of 33.3 ± 5.9 years, to explore the potential benefits of topical GSH. The trial subjects received supervised applications of facial wash twice a day, along with day cream containing sunscreen and night cream. The subjects were divided into three groups based on the active ingredients of the tested products, which included GSH (as OPITAC glutathione, Kohjin/Mitsubishi) at concentrations of 0.1 percent and 0.5 percent, and a control group without GSH.

Throughout the trial, the effects of the tested products on skin color and pigmentation were measured using colorimetry with Chromameter Minolta for L. Compared to the baseline measurements, there were significant increases in lightness (L) detected as early as week 2 for the group using GSH at 0.1 percent concentration. Interestingly, this increase was significantly higher compared to the group using GSH at the higher concentration of 0.5 percent, as well as the group without GSH. It is important to note that hyperpigmented lesions also showed improvement, particularly in the group using GSH at 0.5 percent concentration, which displayed superiority compared to the other groups at week 8. In conclusion, the skin care products containing GSH at 0.1 percent and 0.5 percent concentrations were found to be effective in lightening facial skin.

The findings from these studies shed light on the potential benefits of GSH in achieving skin lightening, either through buccal administration or topical application. It is worth noting that these studies focused on specific populations and more research is necessary to explore its effectiveness and safety across different skin types and ethnicities.

In summary, the administration of Glutathione sublingual clinically studiedglutathione, whether oral, buccal, or topical, has shown promising results in skin lightening and the improvement of complexion. Studies have demonstrated that glutathione not only enhances skin brightness but also reduces hyperpigmentation, wrinkles, and minimizes pores. Moreover, its effects have been evident in as little as two weeks, with a sustained impact over longer periods. These benefits were observed across a range of different skin types and ethnicities. However, it is important to highlight that these findings are based on specific populations, and more research needs to be conducted to confirm the consistency of these effects across a broader spectrum of skin types and ethnicities. The studies have also confirmed that the usage of glutathione is well-tolerated with no serious adverse effects reported.

(https://vitanetonline.com:443/forums/Index.cfm?CFApp=1&Message_ID=6592)


Oat extract can protect against alcohol-induced liver damage
TopPreviousNext

Date: May 02, 2019 02:59 PM
Author: Darrell Miller (support@vitanetonline.com)
Subject: Oat extract can protect against alcohol-induced liver damage





Eating oats may prevent liver damage caused by drinking, according to research published in the journal Nutrition Research. Indian researchers tested the effects of oat extract on mice with alcohol-induced liver damage. First, they pretreated mice with phenolic-enriched ethyl acetate fraction of oats at two levels every day for 12 days. Next, they induced liver damage in the same mice with doses of 50 percent ethanol every 12 hours. Their results showed that pretreatment with oat extract at higher dosages decreased the levels of liver injury.

Key Takeaways:

  • Oats, which goes by the scientific name Avena sativa, has been found to be effective in preventing alcohol-induced liver damage.
  • A mice model was used in understanding the effects of oats on liver damage but it is stated that the real pathways for this is not well understood.
  • The research team first gave oats extracts to mice for 12 days then they induced liver damage on them and then they measured the alcohol-induced liver injury.

"Research has found an association between consumption of oats and lower risk of cardiovascular disease, diabetes, and gastrointestinal disorders."

Read more: https://www.naturalnews.com/2019-03-13-oat-extract-can-protect-against-alcohol-induced-liver-damage.html

(https://vitanetonline.com:443/forums/Index.cfm?CFApp=1&Message_ID=6244)


Cannabis can reverse the effects of alcohol-induced liver damage
TopPreviousNext

Date: April 23, 2019 02:27 PM
Author: Darrell Miller (support@vitanetonline.com)
Subject: Cannabis can reverse the effects of alcohol-induced liver damage





Even though they refer to both types of cannabis, it should be noted that the two types are not interchangeable and have only a slightly different chemical compound. The study showed that active cannabis use provides a profound protective effect against non-alcoholic fatty liver disease, independent of other known metabolic risk factors. Unfortunately they haven't yet uncovered how precisely how it provides benefit to the patient in need, it does provide a reduction in pain.

Key Takeaways:

  • A large study of patients with a history of alcoholism showed that cannabis use can lower the odds of liver diseases, including cancer.
  • Hemp, though it doesn't have enough THC to get patients 'high', still has medicinal properties.
  • Smoking cannabis has been shown to be over 100 times safer than drinking alcohol.

"The study found that using cannabis correctly significantly lowered the odds of various liver diseases such as hepatitis, cirrhosis, and even hepatocellular carcinoma, a type of liver cancer."

Read more: https://www.naturalnews.com/2019-03-01-cannabis-can-reverse-the-effects-of-alcohol-induced-liver-damage.html

(https://vitanetonline.com:443/forums/Index.cfm?CFApp=1&Message_ID=6159)


Artichoke extract found to lower high cholesterol and protect the liver from alcohol damage
TopPreviousNext

Date: September 22, 2017 12:14 PM
Author: Darrell Miller (support@vitanetonline.com)
Subject: Artichoke extract found to lower high cholesterol and protect the liver from alcohol damage





Pharmaceutical companies are constantly coming up with more and more medications to treat all kinds of issues and the doctors have no problems prescribing these pills. It is no wonder that due to side effects and cost people are looking for a more natural way to care common ailments. A recent study out of China has shown that an extract from the nutrient rich artichoke can actually lower cholesterol and help reverse liver damage caused by alcohol. Read here about this safe alternative to prescribed medication.

Key Takeaways:

  • More and more people are looking for natural solutions for conditions that are typically treated with pharmaceuticals, which often have negative side effects.
  • According to a study published in Nutrition and Liver Disease, artichoke extract can decrease high cholesterol levels and protect the liver from alcohol-induced injury.
  • Artichoke extract, combined with a healthy diet, has the potential to help some people stay off risky statins and safely control their cholesterol.

"In a Chinese study published by the journal Nutrition and Liver Disease, artichoke extract was shown to significantly prevent elevated levels of total cholesterol and triglycerides while reducing the inflammatory infiltration, degeneration and necrosis of hepatocytes in the liver, indicating a powerful effect against acute alcohol-induced liver injury."

Read more: http://www.naturalnews.com/2017-09-14-artichoke-extract-found-to-lower-high-cholesterol-and-protect-the-liver-from-alcohol.html

(https://vitanetonline.com:443/forums/Index.cfm?CFApp=1&Message_ID=5271)


Curcumin - Turmeric Extract
TopPreviousNext

Date: August 19, 2005 12:47 PM
Author: Darrell Miller (dm@vitanetonline.com)
Subject: Curcumin - Turmeric Extract

Curcumin

Turmeric- History and Traditional Usage

Native to Southeast Asia, Curcuma longa is a tall
tropical shrub with large oblong leaves and pale yellow flowers.
The genus “Curcuma” belongs to the Zingiberaceae family, which
includes ginger.1 The plant possesses a large root structure
with fleshy, bulbous underground parts called “rhizomes.” These
rhizomes, known as turmeric root, are harvested at maturity,
dried and cured for commercial use. Chemical analysis shows that
dried turmeric contains essential and volatile oils, with a
curcuminoid content of 2.5 to 5.0 %.2

In addition to its
popularity as a spice, turmeric is used as a dye for cloth and
coloring agent in foods and cosmetics, thanks to its rich yellow
color. Turmeric also serves as a preservative, probably owing to
the antioxidant and antimicrobial properties of curcumin.
Extracts of Curcuma longa have demonstrated in vitro
antibacterial and anti-fungal effects.3

Turmeric is named in
ancient Ayurvedic and Chinese herbal texts as a traditional folk
remedy. Historically, turmeric was used externally for wounds,
and sprains, and internally for digestive complaints,
rheumatism, liver disorders, coughs and colds.4
Benefits

Protects cells and tissues by fighting free radicals.*

Supports joint function*

The numerous beneficial
effects attributed to turmeric stem in large measure from the
antioxidant properties of curcumin. Antioxidants neutralize free
radicals, which are highly unstable molecules that can damage
cellular structures through abnormal oxidative reactions.
Curcumin is a potent “scavenger” of the superoxide radical, a
free radical that initiates potentially harmful oxidative
processes such as lipid peroxidation.5 Through this activity,
curcumin has been shown to protect skin cells from the injurious
effect of nitroblue tetrazolium, a toxin that generates
superoxide radicals. Curcumin also increases survival of cells
exposed in vitro to the enzyme hypoxanthine/xanthine oxidase,
which stimulates superoxide and hydrogen peroxide production.
Curcumin itself is not toxic to cells, even at high
concentrations. Pure curcumin was shown to be less protective
than a mixture of curcuminoids, indicating a possible synergism
among curcuminoids.6 Because free radicals are involved in aging
and exert harmful effects on skin, these results suggest
curcumin may help slow skin aging.

Curcumin demonstrates
several other in vitro effects linked to free radical
scavenging. Curcumin scavenges nitric oxide, a compound
associated with the body’s inflammatory response.7 Pure curcumin
and turmeric extracts protect red blood cells from lipid
peroxidation induced by hydrogen peroxide.8 Curcumin has been
shown to protect DNA from oxidative damage, inhibit binding of
toxic metabolites to DNA, and reduce DNA mutations in the Ames’
test.9 Although additional studies suggest an anticarcinogenic
effect of curcumin, through protection of DNA,10 one in vitro
study found that curcumin induced DNA damage in human gastric
mucosal cells.11 It is speculated that curcumin may act as a
pro-oxidant in the presence of transition metal ions such as
copper and iron. (This is true for other antioxidants, including
vitamin C.) Curcumin also demonstrates in vitro inhibition of
COX-I and COX-II enzymes, which are involved in the inflammatory
reaction.12 Together these results strongly suggest that
curcumin is a potent bioprotectant with a potentially wide range
of therapeutic applications.

Animal studies- In vivo protective effects

Through its free radical scavenging
properties, curcumin has shown bioprotective effects in animals.
In one study, rats were treated with isoproterenol, a chemical
that causes cardiac hypertrophy (enlargement of the heart) due
to abnormal collagen metabolism. Co-treatment with curcumin
reversed the degradation of collagen and cardiac hypertrophy
induced by isoproterenol.13 Curcumin protects mice from
detrimental effects of radiation, by stabilizing the glyoxalase
system, a biological system that regulates cell division.14
Curcumin protects livers of rats from the damaging effects of
carbon tetrachloride (CCl4), a potent hepatoxin that injures the
liver via its free radical metabolite, CCl3.15,16 Curcumin
protected rats from alcohol-induced brain damage, in a study in
which oral administration of curcumin reversed lipid
peroxidation, reduced levels of free-radical metabolites and
increased levels of glutathione, a major physiologic
antioxidant.17 Curcuma longa extracts have shown
anti-inflammatory effects in rats.18

Human Trials

Curcumin exhibits free-radical scavenging ability when
administered to humans. In an open trial (uncontrolled), 18
healthy individuals ranging in age from 27 to 67 years consumed
a Curcuma longa extract, at a dose supplying 20 mg curcuminoids,
for 45 days. Before and after blood tests showed a statistically
significant decrease in lipid peroxides.19 Preliminary trials
have tested the anti-inflammatory action of curcumin, with
results that verify the traditional use of turmeric as an
anti-rheumatic herb. In a short-term double-blind, cross-over,
comparative study, 18 people received curcumin (1200 mg daily)
or phenylbutazone for two week periods. Both curcumin and
phenylbutazone produced measurable improvements in joint
flexibility and walking time. The subjects reported results only
with phenylbutazone, which may be explained by the short
duration of the trial.20 In a small placebo-controlled trial
comparing curcumin to phenylbutazone, 45 patients with
post-operative inflammation received curcumin, phenylbutazone or
placebo. The anti-inflammatory effects of curcumin and
phenylbutazone were comparable and superior to placebo.21
Curcumin has not been found to produce an analgesic (pain
relieving) effect.

Bioperine-Nature’s Absorption Enhancer
Boosts Curcumin Absorption*

Traditional Ayurvedic herbal
formulas often include black pepper and long pepper as
synergistic herbs. The active ingredient in both black pepper
and long pepper is the alkaloid, piperine. Experiments carried
out to evaluate the scientific basis for the use of peppers have
shown that piperine significantly enhances bioavailability when
consumed with other substances.22 Several double-blind clinical
studies have confirmed that Bioperine® increases absorption of
nutrients.23

Curcumin is poorly absorbed in the intestinal
tract, limiting its therapeutic effectiveness. Oral doses are
largely excreted in feces, and only trace amounts appear in the
blood. Concomitant administration of 20 mg of piperine with 2
grams of curcumin increases the bioavailability of curcumin by
2000%.24

Scientific References


1. Majeed, M., Badmaev,
V., Shivakumar, U., Rajendran, R. Curcuminoids. 1995.
Piscataway, NJ: NutriScience Publishers.
2. Srimal, R.C.
Turmeric: a brief review of its medicinal properties.
Fitoterapia 1997;68(6):483-93.
3. Ammon, H.P.T., Wahl, M.A.
Pharmacology of Curcuma longa. Planta Medica 1991;57:1-7.
4.
Snow, J.M. Herbal Monograph: Curcuma longa L. (Zingiberaceae).
The Protocol Journal of Botanical Medicine, Autumn
1995:43-46.
5. Rao, N.S., Rao, M.N.A. Free radical scavenging
activity of curcuminoids. Arzneim.-Forsch./Drug Res.
1996;46(2):169-171.
6. Bonté. F. et al. Protective effect of
curcuminoids on epidermal skin cells under free oxygen radical
stress. Planta Medica 1997;63:265-66.
7. Rao, S., Rao, M.N.A.
Nitric oxide scavenging by curcuminoids. J Pharm. Pharmacol.
1997;49:105-7.
8. Lalitha, S., Selvam, R. Prevention of
H2Os-induced red blood cell lipid peroxidation by aqueous
extracted turmeric. Asia Pacific J Clin Nutr
1999;8(2):113-14.
9. Deshpande, S.S., Maru, G.B. Effects of
curcumin on the formation of benzo[a]pyrene derived DNA adducts
in vitro. Cancer Letters 1995;96:71-80.
10. Subramanian, M., et
al. Diminution of singlet oxygen-induced DNA damage by curcumin
and related antioxidants. Mutation Research
1994;311:249-55.
11. Blasiak, J., Trzeciak, A., Kowalik, J.
Curcumin damages DNA in human gastric mucosa cells and
lymphocytes. Journal of Environmental Pathology, Toxicology and
Oncology 1999;18(4):271-76.
12. Ramsewak, R.S., DeWitt, D.L.,
Nair, M.G. Cytotoxicity, antioxidant, and anti-inflammatory
activities of Curcumins I-III from Curcuma longa. Phytomedicine
2000;7(4):303-308.
13. Nirmala, C. Anand, S., Puvanakrishnan,
R. Curcumin treatment modulates collagen metabolism in
isoproterenol induced myocardial necrosis in rats. Molecular and
Cellular Biochemistry 1999;197:31-37.
14. Choudhary, D.,
Chandra, D. Kale, R.K. Modulation of radioresponse of glyoxalase
system by curcumin. Journal of Ethnopharmacology
1999;64:1-7.
15. Park, E-J. et al. Protective effect of
curcumin in rat liver injury induced by carbon tetrachloride. J
Pharm. Pharmacol. 2000;52:437-40.
16. Deshpande, U.R. et al.
Protective effect of turmeric (Curcuma longa L.) extract on
carbon tetrachloride-induced liver damage in rats. Indian
Journal of Experimental Biology 1998;36:573-77.
17.
Rajakrishnan, V. et al. Neuroprotective role of curcumin from
Curcuma longa on ethanol-induced brain damage. Phytotherapy
Research 1999;13:571-74.
18. Arora, R.B. Basu, N., Kapoor, V.,
Jain, A.P. Anti-inflammatory studies on Curcuma longa
(Turmeric). Indian J Med Res 1971;59(8):1289-95.
19.
Ramirez-Bosca, A. et al. Antioxidant curcuma extracts decrease
the blood peroxide levels of human subjects. Age
1995;18:167-69.
20. Deodhar, S.D., Sethi, R. Srimal. R.C.
Preliminary study on antirheumatic activity of curcumin
(diferoyl methane). Indian J Med Res 1980;71:632-34.
21.
Satoskar, R.R., Shah, S J. Shenoy, S.G. Evaluation of
anti-inflammatory property of curcumin (diferoyl methane) in
patients with postoperative inflammation. International Journal
of Clinical Pharmacology, Therapy and Toxicolgy
1986;24(12):651-54.
22. Atal, C., Zutshi, U., Rao, P.
Scientific evidence on the role of Ayurvedic herbals on
bioavailability of drugs. Journal of Ethnopharmacology
1981;4:229-232.
23. Bioperine®–Nature's Bioavailability
Enhancing Thermonutrient. Executive Summary. 1996; Sabinsa
Corporation, Piscataway, N.J.
24. Shoba, G., et al. Influence
of piperine on the pharmacokinetics of curcumin in animals and
human volunteers. Planta Medica 1998;64(4):353-6.

© 2002
Doctor's Best, Inc. Revised 8/13/02

*This statement has not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure or prevent any disease.



--
Vitanet ®

(https://vitanetonline.com:443/forums/Index.cfm?CFApp=1&Message_ID=734)



VitaNet ® LLC. Discount Vitamin Store.